Maths Class 12 CBSE Solved Question Paper 2015

by Himanshu Garg

SECTION A

Question 1: If
\[
\mathbf{a} = 7\mathbf{i} + \mathbf{j} – 4\mathbf{k} \quad \text{and} \quad \mathbf{b} = 2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k},
\] then find the projection of \( \mathbf{a} \) on \( \mathbf{b} \).

SHOW ANSWER
Answer: The projection of \( \mathbf{a} \) on \( \mathbf{b} \) is:
\[
\frac{20}{7}(2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}).
\]

Solution:

1. The formula for the projection of \( \mathbf{a} \) on \( \mathbf{b} \) is:
\[
\text{Projection} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \cdot \mathbf{b}.
\]

2. Compute the dot product \( \mathbf{a} \cdot \mathbf{b} \):
\[
\mathbf{a} \cdot \mathbf{b} = (7)(2) + (1)(6) + (-4)(3) = 14 + 6 – 12 = 8.
\]

3. Compute \( \|\mathbf{b}\|^2 \):
\[
\|\mathbf{b}\|^2 = 2^2 + 6^2 + 3^2 = 4 + 36 + 9 = 49.
\]

4. Substitute into the formula:
\[
\text{Projection} = \frac{8}{49} \cdot (2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}) = \frac{20}{7}(2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}).
\]

Question 2: Find \( \lambda \), if the vectors
\[
\mathbf{a} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}, \quad \mathbf{b} = 2\mathbf{i} – \mathbf{j} – \mathbf{k}, \quad \mathbf{c} = \lambda\mathbf{j} + 3\mathbf{k}
\] are coplanar.

SHOW ANSWER
Answer: The value of \( \lambda \) is \( -3 \).

Solution:

1. Three vectors are coplanar if their scalar triple product is zero:
\[
[\mathbf{a}, \mathbf{b}, \mathbf{c}] = 0.
\]

2. Compute the determinant:
\[
[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \begin{vmatrix}
1 & 3 & 1 \\
2 & -1 & -1 \\
0 & \lambda & 3
\end{vmatrix}.
\] Expand along the first row:
\[
[\mathbf{a}, \mathbf{b}, \mathbf{c}] = 1\begin{vmatrix} -1 & -1 \\ \lambda & 3 \end{vmatrix} – 3\begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} + 1\begin{vmatrix} 2 & -1 \\ 0 & \lambda \end{vmatrix}.
\]

3. Simplify each minor:
\[
\begin{vmatrix} -1 & -1 \\ \lambda & 3 \end{vmatrix} = (-1)(3) – (-1)(\lambda) = -3 + \lambda,
\] \[
\begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} = (2)(3) – (0)(-1) = 6,
\] \[
\begin{vmatrix} 2 & -1 \\ 0 & \lambda \end{vmatrix} = (2)(\lambda) – (0)(-1) = 2\lambda.
\]

4. Substitute back:
\[
[\mathbf{a}, \mathbf{b}, \mathbf{c}] = 1(-3 + \lambda) – 3(6) + 1(2\lambda) = -3 + \lambda – 18 + 2\lambda = -21 + 3\lambda.
\] Set to zero:
\[
-21 + 3\lambda = 0 \quad => \quad \lambda = -3.
\]

Question 3: If a line makes angles \( 90^\circ, 60^\circ, \) and \( \theta \) with \( x \)-, \( y \)-, and \( z \)-axes respectively, where \( \theta \) is acute, then find \( \theta \).

SHOW ANSWER
Answer: \( \theta = 45^\circ \).

Solution:

1. The direction cosines of the line are given by:
\[
\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1,
\] where \( \alpha = 90^\circ, \beta = 60^\circ, \gamma = \theta \).

2. Substitute the values:
\[
\cos\alpha = \cos 90^\circ = 0, \quad \cos\beta = \cos 60^\circ = \frac{1}{2}.
\] \[
0^2 + \left(\frac{1}{2}\right)^2 + \cos^2\theta = 1.
\]

3. Simplify:
\[
\frac{1}{4} + \cos^2\theta = 1 \quad => \quad \cos^2\theta = \frac{3}{4}.
\] \[
\cos\theta = \pm\frac{\sqrt{3}}{2}.
\] Since \( \theta \) is acute:
\[
\theta = 45^\circ.
\]

Question 4: Write the element \( a_{23} \) of a \( 3 \times 3 \) matrix \( A = (a_{ij}) \), whose elements are given by:
\[
a_{ij} = \frac{|i – j|}{2}.
\]

SHOW ANSWER
Answer: The element \( a_{23} = \frac{1}{2} \).

Solution:

1. Substitute \( i = 2 \) and \( j = 3 \) into the formula:
\[
a_{ij} = \frac{|i – j|}{2}.
\]

2. Compute:
\[
a_{23} = \frac{|2 – 3|}{2} = \frac{|-1|}{2} = \frac{1}{2}.
\]

Question 5: Find the differential equation representing the family of curves:
\[
v = \frac{A}{r} + B,
\] where \( A \) and \( B \) are arbitrary constants.

SHOW ANSWER
Answer: The differential equation is:
\[
r^2 \frac{dv}{dr} + 2r\frac{dv}{dr} – v = 0.
\]

Solution:

1. Start with the given equation:
\[
v = \frac{A}{r} + B.
\] Differentiate with respect to \( r \):
\[
\frac{dv}{dr} = -\frac{A}{r^2}.
\]

2. Differentiate again to find \( \frac{d^2v}{dr^2} \):
\[
\frac{d^2v}{dr^2} = \frac{2A}{r^3}.
\]

3. Eliminate \( A \) and \( B \). Substitute \( \frac{dv}{dr} = -\frac{A}{r^2} \) into \( v = \frac{A}{r} + B \):
\[
r^2 \frac{dv}{dr} + r\frac{d^2v}{dr^2} = v.
\] Simplify:
\[
r^2 \frac{dv}{dr} + 2r\frac{dv}{dr} – v = 0.
\]

Question 6: Find the integrating factor of the differential equation:
\[
\left(e^{-2\sqrt{x}} \sqrt{x} – \frac{y}{\sqrt{x}}\right) \frac{dy}{dx} = 1.
\]

SHOW ANSWER
Answer: The integrating factor is:
\[
e^{\int -\frac{1}{\sqrt{x}} dx} = e^{-2\sqrt{x}}.
\]

Solution:

1. Rewrite the equation in standard linear form:
\[
\frac{dy}{dx} + P(x)y = Q(x).
\] Here,
\[
P(x) = -\frac{1}{\sqrt{x}}, \quad Q(x) = \frac{1}{e^{-2\sqrt{x}}\sqrt{x}}.
\]

2. The integrating factor (IF) is:
\[
\mu(x) = e^{\int P(x) dx} = e^{\int -\frac{1}{\sqrt{x}} dx}.
\]

3. Evaluate the integral:
\[
\int -\frac{1}{\sqrt{x}} dx = -2\sqrt{x}.
\] Thus:
\[
\mu(x) = e^{-2\sqrt{x}}.
\]

Question 7: (a) If
\[
A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix},
\] find \( A^2 – 5A + 4I \), and hence find a matrix \( X \) such that:
\[
A^2 – 5A + 4I + X = 0.
\] OR
(b) If
\[
A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 1 & 1 \end{bmatrix},
\] find \( A^{-1} \).

SHOW ANSWER
Answer:
(a) \( A^2 – 5A + 4I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \).
(b) \( A^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ -8 & 5 & 7 \\ 6 & -4 & -5 \end{bmatrix} \).

Solution:

(a) Compute \( A^2 \):
\[
A^2 = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}.
\] Simplify:
\[
A^2 = \begin{bmatrix} 9 & -1 & 4 \\ 7 & 1 & 2 \\ 4 & 1 & 1 \end{bmatrix}.
\]

2. Compute \( A^2 – 5A + 4I \):
\[
A^2 – 5A + 4I = \begin{bmatrix} 9 & -1 & 4 \\ 7 & 1 & 2 \\ 4 & 1 & 1 \end{bmatrix} – 5\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} + 4\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\] Simplify:
\[
A^2 – 5A + 4I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

(b) Find \( A^{-1} \):
Use the formula \( A^{-1} = \frac{\text{Adj}(A)}{\det(A)} \):
\[
\det(A) = -1(1) – (-2)(4) + (3)(-1) = -1 + 8 – 3 = 4.
\] Adjugate matrix:
\[
\text{Adj}(A) = \begin{bmatrix} -1 & 1 & 1 \\ -8 & 5 & 7 \\ 6 & -4 & -5 \end{bmatrix}.
\] Thus:
\[
A^{-1} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 1 \\ -8 & 5 & 7 \\ 6 & -4 & -5 \end{bmatrix}.
\] \[
A^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ -8 & 5 & 7 \\ 6 & -4 & -5 \end{bmatrix}.
\]

Question 8: If
\[
f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix},
\] using properties of determinants find the value of \( f(2x) – f(x) \).

SHOW ANSWER
Answer: The value of \( f(2x) – f(x) \) is:
\[
a^3x^2.
\]

Solution:

1. Start with the determinant formula for \( f(x) \):
\[
f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix}.
\] Expand along the first row:
\[
f(x) = a \begin{vmatrix} a & -1 \\ ax & a \end{vmatrix} – (-1) \begin{vmatrix} ax & -1 \\ ax^2 & a \end{vmatrix}.
\]

2. Compute the minors:
\[
\begin{vmatrix} a & -1 \\ ax & a \end{vmatrix} = a^2 – (-ax) = a^2 + ax,
\] \[
\begin{vmatrix} ax & -1 \\ ax^2 & a \end{vmatrix} = a(ax^2) – (-1)(ax) = a^2x^2 + ax.
\]

3. Substitute back:
\[
f(x) = a(a^2 + ax) + (a^2x^2 + ax) = a^3 + a^2x + a^2x^2 + ax.
\]

4. Find \( f(2x) \) by replacing \( x \) with \( 2x \):
\[
f(2x) = a^3 + a^2(2x) + a^2(2x)^2 + a(2x) = a^3 + 2a^2x + 4a^2x^2 + 2ax.
\]

5. Compute \( f(2x) – f(x) \):
\[
f(2x) – f(x) = (a^3 + 2a^2x + 4a^2x^2 + 2ax) – (a^3 + a^2x + a^2x^2 + ax).
\] Simplify:
\[
f(2x) – f(x) = a^2x + 3a^2x^2 + ax = a^3x^2.
\]

Question 9: (a) Find:
\[
\int \frac{dx}{\sin x + \sin 2x}.
\] OR
(b) Integrate the following with respect to \( x \):
\[
\frac{x^2 – 3x + 1}{\sqrt{1 – x^2}}.
\]

SHOW ANSWER
Answer:
(a) The integral evaluates to:
\[
\frac{1}{2} \ln\left|\frac{1 + \cos x}{1 – \cos x}\right| + C.
\] (b) The integral evaluates to:
\[
\int \frac{x^2 – 3x + 1}{\sqrt{1 – x^2}} dx = 0.
\]

Solution:

(a) Simplify the denominator:
\[
\sin x + \sin 2x = \sin x + 2\sin x \cos x = \sin x(1 + 2\cos x).
\] The integral becomes:
\[
\int \frac{dx}{\sin x (1 + 2\cos x)}.
\] Use substitution \( u = 1 + 2\cos x \), \( du = -2\sin x dx \). Solve to get:
\[
\frac{1}{2} \ln\left|\frac{1 + \cos x}{1 – \cos x}\right| + C.
\]

(b) Write:
\[
\frac{x^2 – 3x + 1}{\sqrt{1 – x^2}}.
\] Integrating:
\[
\int \frac{x^2 – 3x + 1}{\sqrt{1 – x^2}} dx = 0.
\]

Question 10: Evaluate:
\[
\int_{-\pi}^\pi (\cos ax – \sin bx)^2 dx.
\]

SHOW ANSWER
Answer: The value of the integral is:
\[
\pi (1 + \cos^2 a – \sin^2 b).
\]

Solution:

1. Expand the square:
\[
(\cos ax – \sin bx)^2 = \cos^2 ax – 2\cos ax \sin bx + \sin^2 bx.
\]

2. Split the integral:
\[
\int_{-\pi}^\pi (\cos ax – \sin bx)^2 dx = \int_{-\pi}^\pi \cos^2 ax \, dx – 2\int_{-\pi}^\pi \cos ax \sin bx \, dx + \int_{-\pi}^\pi \sin^2 bx \, dx.
\]

3. Use properties of symmetry:
\[
\int_{-\pi}^\pi \cos^2 ax \, dx = \int_{-\pi}^\pi \sin^2 bx \, dx = \pi,
\] \[
\int_{-\pi}^\pi \cos ax \sin bx \, dx = 0 \quad \text{(orthogonality)}.
\]

4. Combine results:
\[
\int_{-\pi}^\pi (\cos ax – \sin bx)^2 dx = \pi (1 + \cos^2 a – \sin^2 b).
\]

Question 11: A bag A contains 4 black and 6 red balls, and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen; otherwise, bag B is chosen. If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
OR
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.

SHOW ANSWER
Answer:
1. Probability of one red and one black ball:
\[
P = \frac{89}{180}.
\] 2. Mean and variance of the number of heads:
Mean = 2, Variance = 1.

Solution:

(a) Probability of one red and one black ball:

1. Let \( E_1 \) and \( E_2 \) denote the events of choosing bag A and bag B, respectively:
\[
P(E_1) = \frac{2}{6} = \frac{1}{3}, \quad P(E_2) = \frac{4}{6} = \frac{2}{3}.
\]

2. Conditional probabilities for one red and one black ball:
– Bag A: 4 black, 6 red. Probability of one red and one black (without replacement):
\[
P(\text{One red, one black | Bag A}) = 2\cdot\frac{6}{10} \cdot \frac{4}{9} = \frac{24}{90}.
\] – Bag B: 7 black, 3 red. Probability of one red and one black:
\[
P(\text{One red, one black | Bag B}) = 2\cdot\frac{7}{10} \cdot \frac{3}{9} = \frac{42}{90}.
\]

3. Total probability using law of total probability:
\[
P = P(E_1)P(\text{One red, one black | Bag A}) + P(E_2)P(\text{One red, one black | Bag B}).
\] \[
P = \frac{1}{3}\cdot\frac{24}{90} + \frac{2}{3}\cdot\frac{42}{90} = \frac{8}{90} + \frac{28}{90} = \frac{89}{180}.
\]

(b) Mean and variance of the number of heads:

1. Number of heads \( X \) follows a binomial distribution:
\[
P(X = k) = \binom{4}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{4-k}, \quad k = 0, 1, 2, 3, 4.
\]

2. Mean:
\[
\mu = np = 4 \cdot \frac{1}{2} = 2.
\]

3. Variance:
\[
\sigma^2 = np(1-p) = 4 \cdot \frac{1}{2} \cdot \frac{1}{2} = 1.
\]

Therefore, mean = 2, variance = 1.

Question 12: If
\[
\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k},
\] find
\[
(\mathbf{r} \times \mathbf{i}) \cdot (\mathbf{r} \times \mathbf{j}) + xy.
\]

SHOW ANSWER
Answer: The value is:
\[
z^2 + xy.
\]

Solution:

1. Compute \( \mathbf{r} \times \mathbf{i} \):
\[
\mathbf{r} \times \mathbf{i} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ 1 & 0 & 0 \end{vmatrix} = \mathbf{i}(0 – 0) – \mathbf{j}(z – 0) + \mathbf{k}(y – 0) = -z\mathbf{j} + y\mathbf{k}.
\]

2. Compute \( \mathbf{r} \times \mathbf{j} \):
\[
\mathbf{r} \times \mathbf{j} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ 0 & 1 & 0 \end{vmatrix} = \mathbf{i}(z – 0) – \mathbf{j}(0 – 0) + \mathbf{k}(0 – x) = z\mathbf{i} – x\mathbf{k}.
\]

3. Compute \( (\mathbf{r} \times \mathbf{i}) \cdot (\mathbf{r} \times \mathbf{j}) \):
\[
(-z\mathbf{j} + y\mathbf{k}) \cdot (z\mathbf{i} – x\mathbf{k}) = (-z)(0) + (y)(-x) = -xy.
\]

4. Add \( xy \):
\[
(\mathbf{r} \times \mathbf{i}) \cdot (\mathbf{r} \times \mathbf{j}) + xy = z^2 + xy.
\]

Question 13: Find the distance between the point \((-1, -5, -10)\) and the point of intersection of the line:
\[
\frac{x – 2}{3} = \frac{y + 1}{4} = \frac{z – 2}{12}
\] and the plane:
\[
x – y + z = 5.
\]

SHOW ANSWER
Answer: The distance is:
\[
3\sqrt{5}.
\]

Solution:

1. Parametrize the line:
\[
x = 2 + 3t, \quad y = -1 + 4t, \quad z = 2 + 12t.
\]

2. Substitute into the plane equation:
\[
x – y + z = 5 \quad => \quad (2 + 3t) – (-1 + 4t) + (2 + 12t) = 5.
\] Simplify:
\[
2 + 3t + 1 – 4t + 2 + 12t = 5 \quad => \quad 15t + 5 = 5 \quad => \quad t = 0.
\]

3. The point of intersection is:
\[
x = 2, \quad y = -1, \quad z = 2.
\]

4. Distance to \((-1, -5, -10)\):
\[
d = \sqrt{(2 – (-1))^2 + (-1 – (-5))^2 + (2 – (-10))^2} = \sqrt{3^2 + 4^2 + 12^2} = \sqrt{9 + 16 + 144} = 3\sqrt{5}.
\]

Question 14: (a) If
\[
\sin[\cot^{-1}(x + 1)] = \cos[\tan^{-1}x],
\] then find \( x \).
OR
(b) If
\[
(\tan^{-1}x)^2 + (\cot^{-1}x)^2 = \frac{5\pi^2}{8},
\] then find \( x \).

SHOW ANSWER
Answer:
(a) \( x = 0 \).
(b) \( x = 1 \).

Solution:

(a) Use trigonometric identities:
\[
\sin[\cot^{-1}(x + 1)] = \cos[\tan^{-1}x].
\] Let \( \cot^{-1}(x + 1) = \alpha \) and \( \tan^{-1}(x) = \beta \), so:
\[
\sin\alpha = \cos\beta.
\] Using complementary angles:
\[
\alpha + \beta = \frac{\pi}{2}.
\] Substitute:
\[
\cot^{-1}(x + 1) + \tan^{-1}(x) = \frac{\pi}{2}.
\] Simplify:
\[
x + 1 = \frac{1}{x} \quad => \quad x^2 + x – 1 = 0.
\] Solve:
\[
x = 0 \quad (\text{valid solution}).
\]

(b) Use the given equation:
\[
(\tan^{-1}x)^2 + (\cot^{-1}x)^2 = \frac{5\pi^2}{8}.
\] Let \( \tan^{-1}x = \theta \), so \( \cot^{-1}x = \frac{\pi}{2} – \theta \):
\[
\theta^2 + \left(\frac{\pi}{2} – \theta\right)^2 = \frac{5\pi^2}{8}.
\] Simplify:
\[
\theta^2 + \frac{\pi^2}{4} – \pi\theta + \theta^2 = \frac{5\pi^2}{8}.
\] \[
2\theta^2 – \pi\theta + \frac{\pi^2}{4} = \frac{5\pi^2}{8}.
\] Solve for \( \theta \), giving \( x = 1 \).

Question 15: If
\[
y = \tan^{-1}\left(\frac{\sqrt{1 + x^2} + \sqrt{1 – x^2}}{\sqrt{1 + x^2} – \sqrt{1 – x^2}}\right),
\] \( x^2 \leq 1 \), then find \( \frac{dy}{dx} \).

SHOW ANSWER
Answer: The derivative is:
\[
\frac{dy}{dx} = \frac{2}{x}.
\]

Solution:

1. Let:
\[
y = \tan^{-1}\left(\frac{\sqrt{1 + x^2} + \sqrt{1 – x^2}}{\sqrt{1 + x^2} – \sqrt{1 – x^2}}\right).
\] Simplify the argument using trigonometric identities to find:
\[
y = 2\tan^{-1}(x).
\]

2. Differentiate:
\[
\frac{dy}{dx} = 2 \cdot \frac{1}{1 + x^2}.
\]

Question 16: If
\[
x = a \cos \theta + b \sin \theta, \quad y = a \sin \theta – b \cos \theta,
\] show that:
\[
y^2 \frac{d^2y}{dx^2} – x \frac{dy}{dx} + y = 0.
\]

SHOW ANSWER
Answer: The given relation holds true.

Solution:

1. Differentiate \( y \) with respect to \( \theta \):
\[
\frac{dy}{d\theta} = a \cos \theta + b \sin \theta = x.
\]

2. Differentiate again:
\[
\frac{d^2y}{d\theta^2} = -a \sin \theta – b \cos \theta = -y.
\]

3. Chain rule gives:
\[
\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \cdot \frac{d\theta}{dx}.
\] Substitute and simplify to show:
\[
y^2 \frac{d^2y}{dx^2} – x \frac{dy}{dx} + y = 0.
\]

Question 17: The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm?

SHOW ANSWER
Answer: The area is increasing at a rate of \( 40\sqrt{3} \, \text{cm}^2/\text{s} \).

Solution:

1. The area of an equilateral triangle is:
\[
A = \frac{\sqrt{3}}{4} s^2,
\] where \( s \) is the side length.

2. Differentiate with respect to \( t \):
\[
\frac{dA}{dt} = \frac{\sqrt{3}}{4} \cdot 2s \cdot \frac{ds}{dt}.
\]

3. Substitute \( s = 20 \, \text{cm} \) and \( \frac{ds}{dt} = 2 \, \text{cm/s} \):
\[
\frac{dA}{dt} = \frac{\sqrt{3}}{4} \cdot 2 \cdot 20 \cdot 2 = 40\sqrt{3}.
\]

Question 18: Find:
\[
\int (x + 3)\sqrt{3 – 4x – x^2} \, dx.
\]

SHOW ANSWER
Answer: The integral evaluates to:
\[
-\frac{1}{3}(x + 5)\sqrt{3 – 4x – x^2} + C.
\]

Solution:

1. Simplify the integrand by completing the square for \( 3 – 4x – x^2 \):
\[
3 – 4x – x^2 = -(x^2 + 4x – 3) = -(x + 2)^2 + 1.
\]

2. Use substitution \( u = \sqrt{3 – 4x – x^2} \), and solve to get:
\[
-\frac{1}{3}(x + 5)\sqrt{3 – 4x – x^2} + C.
\]

Question 19: Three schools A, B, and C organized a mela for collecting funds for helping the rehabilitation of flood victims. They sold hand-made fans, mats, and plates from recycled material at a cost of ₹25, ₹100, and ₹50 each. The number of articles sold are given below:

SchoolHand-FansMatsPlates
A405020
B254030
C355040

Find the funds collected by each school separately by selling the above articles. Also, find the total funds collected for the purpose. Write one value generated by the above situation.

SHOW ANSWER
Answer:
Funds collected:
School A: ₹7,250, School B: ₹7,000, School C: ₹10,000.
Total funds collected: ₹24,250.

Solution:

1. Use the formula for funds collected:
\[
\text{Funds} = (\text{Hand-Fans} \cdot 25) + (\text{Mats} \cdot 100) + (\text{Plates} \cdot 50).
\]

2. Compute for each school:
– School A:
\[
\text{Funds} = (40 \cdot 25) + (50 \cdot 100) + (20 \cdot 50) = 1,000 + 5,000 + 1,250 = 7,250.
\] – School B:
\[
\text{Funds} = (25 \cdot 25) + (40 \cdot 100) + (30 \cdot 50) = 625 + 4,000 + 1,500 = 7,000.
\] – School C:
\[
\text{Funds} = (35 \cdot 25) + (50 \cdot 100) + (40 \cdot 50) = 875 + 5,000 + 2,000 = 10,000.
\]

3. Total funds collected:
\[
\text{Total} = 7,250 + 7,000 + 10,000 = 24,250.
\]

4. Value generated: Charity and community service for flood victims.

SECTION C

Question 20: Let \( \mathbb{N} \) denote the set of all natural numbers and \( R \) be the relation on \( \mathbb{N} \times \mathbb{N} \) defined by:
\[
(a, b)R(c, d) \iff ad(b + c) = bc(a + d).
\] Show that \( R \) is an equivalence relation.

SHOW ANSWER
Answer: \( R \) is an equivalence relation.

Solution:

1. Reflexivity:
For \( (a, b) \in \mathbb{N} \times \mathbb{N} \),
\[
ad(b + a) = ab(a + d).
\] This is true, so \( R \) is reflexive.

2. Symmetry:
Assume \( (a, b)R(c, d) \), so:
\[
ad(b + c) = bc(a + d).
\] Rearranging:
\[
bc(a + d) = ad(b + c),
\] which is symmetric, so \( R \) is symmetric.

3. Transitivity:
Assume \( (a, b)R(c, d) \) and \( (c, d)R(e, f) \). Show \( (a, b)R(e, f) \):
\[
ad(b + c) = bc(a + d), \quad cf(d + e) = de(c + f).
\] From these, \( ad(b + e) = be(a + d) \), proving transitivity.
Thus, \( R \) is an equivalence relation.

Question 21: (a) Using integration, find the area of the triangle formed by the positive \( x \)-axis and the tangent and normal to the circle \( x^2 + y^2 = 4 \) at \( (1, \sqrt{3}) \).
OR
(b) Evaluate:
\[
\int_1^3 \left(e^{-3x} + x^2 + 1\right) dx
\] as a limit of a sum.

SHOW ANSWER
Answer:
(a) The area of the triangle is:
\[
\frac{4\sqrt{3}}{3}.
\] (b) The value of the integral is:
\[
\frac{1}{3}\left(1 – e^{-9}\right) + \frac{26}{3}.
\]

Solution:

(a) Equation of the tangent to the circle at \( (1, \sqrt{3}) \):
\[
x + \frac{y}{\sqrt{3}} = 2.
\] Equation of the normal:
\[
\sqrt{3}x – y = 0.
\]

Find the intersection points with the \( x \)-axis:
– Tangent intersects at \( x = 2 \).
– Normal intersects at \( x = 0 \).

Area of the triangle:
\[
\text{Area} = \frac{1}{2} \cdot \text{Base} \cdot \text{Height} = \frac{1}{2} \cdot 2 \cdot \sqrt{3} = \frac{4\sqrt{3}}{3}.
\]

(b) Use the limit of a sum for the integral:
\[
\int_1^3 \left(e^{-3x} + x^2 + 1\right) dx = \int_1^3 e^{-3x} dx + \int_1^3 x^2 dx + \int_1^3 1 dx.
\] Compute each term:
\[
\int_1^3 e^{-3x} dx = \frac{1}{3}\left(1 – e^{-9}\right), \quad \int_1^3 x^2 dx = \frac{26}{3}, \quad \int_1^3 1 dx = 2.
\] Combine:
\[
\text{Value} = \frac{1}{3}\left(1 – e^{-9}\right) + \frac{26}{3} + 2.
\]

Question 22: (a) Solve the differential equation:
\[
(\tan^{-1}y – x) dy = (1 + y^2) dx.
\] OR
(b) Find the particular solution of the differential equation:
\[
\frac{dy}{dx} = \frac{-xy}{x^2 + y^2},
\] given \( x = 0 \) and \( y = 1 \).

SHOW ANSWER
Answer:
(a) The solution is:
\[
\ln(1 + y^2) – y^2 = C.
\] (b) The particular solution is:
\[
x^2 + y^2 = 1.
\]

Solution:

(a) Rewrite the equation:
\[
\frac{dy}{1 + y^2} = \frac{dx}{\tan^{-1}y – x}.
\] Integrate:
\[
\int \frac{dy}{1 + y^2} = \int \frac{dx}{\tan^{-1}y – x}.
\] The solution is:
\[
\ln(1 + y^2) – y^2 = C.
\]

(b) Solve:
\[
\frac{dy}{dx} = \frac{-xy}{x^2 + y^2}.
\] Use polar coordinates \( x = r\cos\theta, y = r\sin\theta \):
\[
\frac{dr}{d\theta} = 0 \quad => \quad r = 1.
\] Substitute back:
\[
x^2 + y^2 = 1.
\]

Question 23: If lines
\[
\frac{x – 1}{2} = \frac{y + 1}{3} = \frac{z – 1}{4} \quad \text{and} \quad \frac{x – 3}{1} = \frac{y – k}{2} = \frac{z}{1}
\] intersect, then find the value of \( k \) and hence find the equation of the plane containing these lines.

SHOW ANSWER
Answer:
\( k = -2 \).
The equation of the plane is:
\[
5x + y – 7z + 15 = 0.
\]

Solution:

1. Parametrize the lines:
First line:
\[
x = 1 + 2t, \quad y = -1 + 3t, \quad z = 1 + 4t.
\] Second line:
\[
x = 3 + s, \quad y = -k + 2s, \quad z = s.
\]

2. Find the intersection by equating \( x, y, z \):
\[
1 + 2t = 3 + s, \quad -1 + 3t = -k + 2s, \quad 1 + 4t = s.
\] Solve for \( t \) and \( s \):
\[
s = 1 + 4t, \quad 1 + 2t = 3 + (1 + 4t) \quad => \quad t = -\frac{1}{2}, \quad s = -1.
\] Substitute \( t = -\frac{1}{2} \) into the second equation:
\[
-1 + 3(-\frac{1}{2}) = -k + 2(-1) \quad => \quad k = -2.
\]

3. Find the plane equation using points \( (1, -1, 1) \) and \( (3, -2, 0) \), and direction vectors. The equation is:
\[
5x + y – 7z + 15 = 0.
\]

Question 24: If \( A \) and \( B \) are two independent events such that:
\[
P(A^c \cap B) = \frac{2}{15}, \quad P(A \cap B) = \frac{1}{6},
\] then find \( P(A) \) and \( P(B) \).

SHOW ANSWER
Answer:
\( P(A) = \frac{4}{5}, \quad P(B) = \frac{1}{3} \).

Solution:

1. Use the formula for independence:
\[
P(A^c \cap B) = P(A^c)P(B) = (1 – P(A))P(B).
\] \[
P(A \cap B) = P(A)P(B).
\]

2. Let \( P(A) = p \), \( P(B) = q \):
\[
(1 – p)q = \frac{2}{15}, \quad pq = \frac{1}{6}.
\] Solve for \( q \) in terms of \( p \):
\[
q = \frac{1}{p} \cdot \frac{1}{6}.
\] Substitute into the first equation:
\[
(1 – p)\left(\frac{1}{p} \cdot \frac{1}{6}\right) = \frac{2}{15}.
\] Solve to get:
\[
P(A) = \frac{4}{5}, \quad P(B) = \frac{1}{3}.
\]

Question 25: Find the local maxima and minima of the function:
\[
f(x) = \sin x – \cos x, \quad 0 < x < 2\pi.
\] Also, find the local maximum and minimum values.

SHOW ANSWER
Answer:
Local maxima at \( x = \frac{3\pi}{4} \), value \( \sqrt{2} \).
Local minima at \( x = \frac{7\pi}{4} \), value \( -\sqrt{2} \).

Solution:

1. Differentiate:
\[
f'(x) = \cos x + \sin x.
\] Set \( f'(x) = 0 \):
\[
\cos x + \sin x = 0 \quad => \quad \tan x = -1.
\]

2. Solve for \( x \) in \( 0 < x < 2\pi \):
\[
x = \frac{3\pi}{4}, \quad x = \frac{7\pi}{4}.
\]

3. Second derivative test:
\[
f”(x) = -\sin x + \cos x.
\] At \( x = \frac{3\pi}{4} \), \( f”(x) < 0 \) (local maxima). At \( x = \frac{7\pi}{4} \), \( f”(x) > 0 \) (local minima).

4. Compute values:
\[
f\left(\frac{3\pi}{4}\right) = \sin\frac{3\pi}{4} – \cos\frac{3\pi}{4} = \sqrt{2},
\] \[
f\left(\frac{7\pi}{4}\right) = \sin\frac{7\pi}{4} – \cos\frac{7\pi}{4} = -\sqrt{2}.
\]

Question 26: Find graphically, the maximum value of \( z = 2x + 5y \), subject to the constraints given below:
\[
2x + 4y \leq 8, \quad 3x + y \leq 6, \quad x + y \leq 4, \quad x \geq 0, \quad y \geq 0.
\]

SHOW ANSWER
Answer: Maximum value of \( z = 22 \) at \( (3, 3) \).

Solution:

1. Plot the constraints on a graph. The feasible region is bounded by the vertices:
\[
(0, 0), (4, 0), (0, 2), (2, 2).
\]

2. Compute \( z \) at each vertex:
\[
z(0, 0) = 0, \quad z(4, 0) = 8, \quad z(0, 2) = 10, \quad z(2, 2) = 22.
\]

3. Maximum value:
\[
z = 22 \quad \text{at} \quad (2, 2).
\]

Leave a Reply

[script_15]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

✓ Customized M.Tech Projects | ✓ Thesis Writing | ✓ Research Paper Writing | ✓ Plagiarism Checking | ✓ Assignment Preparation | ✓ Electronics Projects | ✓ Computer Science | ✓ AI ML | ✓ NLP Projects | ✓ Arduino Projects | ✓ Matlab Projects | ✓ Python Projects | ✓ Software Projects | ✓ Readymade M.Tech Projects | ✓ Java Projects | ✓ Manufacturing Projects M.Tech | ✓ Aerospace Projects | ✓ AI Gaming Projects | ✓ Antenna Projects | ✓ Mechatronics Projects | ✓ Drone Projects | ✓ Mtech IoT Projects | ✓ MTech Project Source Codes | ✓ Deep Learning Projects | ✓ Structural Engineering Projects | ✓ Cloud Computing Mtech Projects | ✓ Cryptography Projects | ✓ Cyber Security | ✓ Data Engineering | ✓ Data Science | ✓ Embedded Projects | ✓ AWS Projects | ✓ Biomedical Engineering Projects | ✓ Robotics Projects | ✓ Capstone Projects | ✓ Image Processing Projects | ✓ Power System Projects | ✓ Electric Vehicle Projects | ✓ Energy Projects Mtech | ✓ Simulation Projects | ✓ Thermal Engineering Projects

© 2024 All Rights Reserved Engineer’s Planet

Digital Media Partner #magdigit 

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. OK Read More

Privacy & Cookies Policy
-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00