Predictive Modeling for Athlete Injury Recovery Time and Setback Risk using Random Forest and XGBoost

by Shivam Kashyap

Predictive Modeling for Athlete Injury Recovery Time and Setback Risk using Random Forest and XGBoost

Effective management of athlete injuries is crucial for optimal performance and career longevity. This thesis introduces a machine learning-based Athlete Injury Recovery Prediction system. Leveraging historical injury data and athlete profiles, the system employs algorithms such as Random Forest and XGBoost to predict recovery times and potential setbacks. Developed using Python and Scikit-learn, the model’s accuracy is enhanced through feature engineering and hyperparameter tuning. A user-friendly interface allows coaches and medical professionals to input data and receive actionable insights. This predictive model aims to revolutionize sports medicine by enabling tailored recovery plans and minimizing downtime for athletes

We’ve teamed up with sproutQ.com, one of India’s leading hiring platforms, to bring you a smarter, faster, and more personalized resume-building experience.

Leave a Reply

[script_17]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. OK Read More

Privacy & Cookies Policy