Performance Evaluation of Various Statistical Classifiers in Detecting the Diseased Citrus Leaves

by Kanchan

Performance Evaluation of Various Statistical Classifiers in Detecting the Diseased Citrus Leaves

In agriculture, plant diseases are primarily responsible for the reduction in production which causes economic losses. In plants, citrus is used as a major source of nutrients like vitamin C throughout the world. However, ‘Citrus’ diseases badly effect the production and quality of citrus fruits. From last decade, the computer vision and image processing techniques have been widely used for detection and classification of diseases in plants. In this article, we propose a hybrid method for detection and classification of diseases in citrus plants. The proposed method consists of two primary phases; (a) detection of lesion spot on the citrus fruits and leaves; (b) classifi- cation of citrus diseases. The citrus lesion spots are extracted by an optimized weighted segmentation method, which is performed on an enhanced input image. Then, color, texture, and geometric features are fused in a codebook. Furthermore, the best features are selected by implementing a hybrid feature selection method, which consists of PCA score, entropy, and skewness-based covariance vector. The selected features are fed to Multi- Class Support Vector Machine (M-SVM) for final citrus disease classification. The proposed technique is tested on Citrus Disease Image Gallery Dataset, Combined dataset (Plant Village and Citrus Images Database of Infested with Scale), and our own collected images database. We used these datasets for detection and classification of citrus diseases namely anthracnose, black spot, canker, scab, greening, and melanose. The proposed technique outperforms the existing methods and achieves 97% classification accuracy on citrus disease image gallery dataset, 89% on combined dataset and 90.4% on our local dataset.

Leave a Reply

[script_15]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

✓ Customized M.Tech Projects | ✓ Thesis Writing | ✓ Research Paper Writing | ✓ Plagiarism Checking | ✓ Assignment Preparation | ✓ Electronics Projects | ✓ Computer Science | ✓ AI ML | ✓ NLP Projects | ✓ Arduino Projects | ✓ Matlab Projects | ✓ Python Projects | ✓ Software Projects | ✓ Readymade M.Tech Projects | ✓ Java Projects | ✓ Manufacturing Projects M.Tech | ✓ Aerospace Projects | ✓ AI Gaming Projects | ✓ Antenna Projects | ✓ Mechatronics Projects | ✓ Drone Projects | ✓ Mtech IoT Projects | ✓ MTech Project Source Codes | ✓ Deep Learning Projects | ✓ Structural Engineering Projects | ✓ Cloud Computing Mtech Projects | ✓ Cryptography Projects | ✓ Cyber Security | ✓ Data Engineering | ✓ Data Science | ✓ Embedded Projects | ✓ AWS Projects | ✓ Biomedical Engineering Projects | ✓ Robotics Projects | ✓ Capstone Projects | ✓ Image Processing Projects | ✓ Power System Projects | ✓ Electric Vehicle Projects | ✓ Energy Projects Mtech | ✓ Simulation Projects | ✓ Thermal Engineering Projects

© 2024 All Rights Reserved Engineer’s Planet

Digital Media Partner #magdigit 

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. OK Read More

Privacy & Cookies Policy
-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00