Design and Development of Adaptive Algorithm for Shunt Compensation in Grid Connected Distribution Systems

by Shivam Kashyap

In recent times, AC grid-connected systems have been experiencing numerous power quality issues, particularly at the distribution level. The increased use of power converter-based machines in various applications, such as industries, homes, shops, offices, and traction, has led to a significant rise in non-linear loads that draw non sinusoidal currents. These non-linear loads have a detrimental impact on the power quality of the supply system. This study aims to address power quality concerns resulting from the growing adoption of renewable energy resources and non-linear loads in the distribution system. Various power quality problems associated with current-based issues are observed, including poor voltage regulation, low power factor, harmonic distortion, and unbalanced currents. To mitigate these issues and improve power quality, Distribution Static Compensators (DSTATCOMs) are increasingly being applied due to their cost benefits. DSTATCOMs, equipped with adaptive filtering techniques, are utilized as cost-effective Shunt Active Power Filters (SAPFs). These filters utilize the enhanced computational capabilities of modern computers to implement adaptive filters, which find applications in noise/echo cancellation, adaptive control, image restoration, and channel equalization. In conclusion, the power quality problems arising from the increased use of renewable energy resources and non-linear loads in the distribution system are a pressing concern. To address these issues, DSTATCOMs with adaptive filtering techniques have emerged as effective and economical solutions, serving as Shunt Active Power Filters. By leveraging the computational power of modern computers, adaptive filters offer noise cancellation and improved control capabilities, making them valuable tools for enhancing power quality in supply systems. This project presents a detail description of the STATCOM network and the design and modelling of the three leg VSC voltage source converter also it compares both the Algorithms presented in the project where on simulating both the Algorithms we find that the Adaptive LMS algorithm is much efficient and highly stable as well as settles smoothly over the output. While SRF theory Algorithms is efficient but it has more total harmonic distortion than that of the LMS algo.

Leave a Reply

[script_15]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. OK Read More

Privacy & Cookies Policy
-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00
✓ Customized M.Tech Projects | ✓ Thesis Writing | ✓ Research Paper Writing | ✓ Plagiarism Checking | ✓ Assignment Preparation | ✓ Electronics Projects | ✓ Computer Science | ✓ AI ML | ✓ NLP Projects | ✓ Arduino Projects | ✓ Matlab Projects | ✓ Python Projects | ✓ Software Projects | ✓ Readymade M.Tech Projects | ✓ Java Projects | ✓ Manufacturing Projects M.Tech | ✓ Aerospace Projects | ✓ AI Gaming Projects | ✓ Antenna Projects | ✓ Mechatronics Projects | ✓ Drone Projects | ✓ Mtech IoT Projects | ✓ MTech Project Source Codes | ✓ Deep Learning Projects | ✓ Structural Engineering Projects | ✓ Cloud Computing Mtech Projects | ✓ Cryptography Projects | ✓ Cyber Security | ✓ Data Engineering | ✓ Data Science | ✓ Embedded Projects | ✓ AWS Projects | ✓ Biomedical Engineering Projects | ✓ Robotics Projects | ✓ Capstone Projects | ✓ Image Processing Projects | ✓ Power System Projects | ✓ Electric Vehicle Projects | ✓ Energy Projects Mtech | ✓ Simulation Projects | ✓ Thermal Engineering Projects

© 2024 All Rights Reserved Engineer’s Planet

Digital Media Partner #magdigit