DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific workflow scheduling in cloud computing

by Shivam Kashyap

DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific workflow scheduling in cloud computing

Cloud infrastructures are suitable environments for processing large scientific workflows. Nowadays, new challenges are emerging in the field of optimizing workflows such that it can meet user’s service quality requirements. The key to workflow optimization is the scheduling of workflow tasks, which is a famous NP-hard problem. Although several methods have been proposed based on the genetic algorithm for task scheduling in clouds, our proposed method is more efficient than other proposed methods due to the use of new genetic operators as well as modified genetic operators and the use of load balancing routine. Moreover, a solution obtained from a heuristic used as one of the initial population chromosomes and an efficient routine also used for generating the rest of the primary population chromosomes. An adaptive fitness function is used that takes into account both cost and makespan. The algorithm introduced in this paper utilizes a load balancing routine to maximize resources’ efficiency at execution time. The performance of the proposed algorithm is evaluated by comparing the results with state of the art algorithms of this field, and the results indicate that the proposed algorithm has remarkable superiority in comparison to other algorithms and performs task scheduling with the least makespan and cost.

Leave a Reply

[script_15]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. OK Read More

Privacy & Cookies Policy
-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00
✓ Customized M.Tech Projects | ✓ Thesis Writing | ✓ Research Paper Writing | ✓ Plagiarism Checking | ✓ Assignment Preparation | ✓ Electronics Projects | ✓ Computer Science | ✓ AI ML | ✓ NLP Projects | ✓ Arduino Projects | ✓ Matlab Projects | ✓ Python Projects | ✓ Software Projects | ✓ Readymade M.Tech Projects | ✓ Java Projects | ✓ Manufacturing Projects M.Tech | ✓ Aerospace Projects | ✓ AI Gaming Projects | ✓ Antenna Projects | ✓ Mechatronics Projects | ✓ Drone Projects | ✓ Mtech IoT Projects | ✓ MTech Project Source Codes | ✓ Deep Learning Projects | ✓ Structural Engineering Projects | ✓ Cloud Computing Mtech Projects | ✓ Cryptography Projects | ✓ Cyber Security | ✓ Data Engineering | ✓ Data Science | ✓ Embedded Projects | ✓ AWS Projects | ✓ Biomedical Engineering Projects | ✓ Robotics Projects | ✓ Capstone Projects | ✓ Image Processing Projects | ✓ Power System Projects | ✓ Electric Vehicle Projects | ✓ Energy Projects Mtech | ✓ Simulation Projects | ✓ Thermal Engineering Projects

© 2024 All Rights Reserved Engineer’s Planet

Digital Media Partner #magdigit