Breakthrough in Gas Detection Technology: Neural Network Algorithm Tackles Cross-Interference

by Engineer's Planet
Breakthrough in Gas Detection Technology: Neural Network Algorithm Tackles Cross-Interference

Introduction to TDLAS Technology

Tunable diode laser absorption spectroscopy (TDLAS) technology has gained much appreciation for its ability to detect greenhouse gases mainly because it offers the opportunities of non-contact and real time measurements. Nevertheless, the problem of discordance in gas absorption spectral interferences has become a major technical challenge, which affected the capability of simultaneous measurements of multi-component gases. Breakthrough in Gas Detection Technology

Neural Network-Based Decoupling Algorithm

In response to this challenge, a research team led by Prof. Gao Xiaoming of the Hefei Institutes of Physical Science at the Chinese Academy of Sciences has designed an alleviated neural network decoupling algorithm for aliased spectra. This innovative solution enables a low cost and, therefore, low complexity way to mitigate the problems caused by TDLAS technology.

Significant Improvement in Gas Detection

This neural network algorithm has made it much easier and more accurate to identify more than one gas at an instance,’ added Prof. Gao. The research has been reported in the ACS Sensors journal, abbreviated as a scientific publication.

Training the Neural Network

According to the findings of the researchers, they calculated the modulation depth under controlled lab environment and collected a large amount of spectra containing aliasing for the neural network model. This is because extensive training of the model helped it to generalize the results across the different conditions. In addition, experimental data was also gathered to retune the proposed model with the aim of proving its utility.

Simplicity and Efficiency

The beauty of this new method lies in its simplicity,” said Gao. “It requires no additional hardware.

Cost-Effective and Accurate Solution

This approach allowed the team to decouple spectral interferences in the existing system with the help of the neural network-based decoupling algorithm, thus simplifying the design and decreasing its cost. Not only did the algorithm separate multi-component gas signals with high accuracy and stability, but transfer learning mechanism also enabled the algorithm to function well in complex environment. It even enabled to detect more than one gas using a single laser which remarkably improved the efficiency of the method.

Implications for Future TDLAS Systems

This work highlights the strong potential for neural networks to differentiate aliased spectra, as demonstrated by the following conclusions for future use of TDLAS gas detection systems in challenging environments.

Leave a Reply

[script_15]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. OK Read More

Privacy & Cookies Policy
-
00:00
00:00
Update Required Flash plugin
-
00:00
00:00
✓ Customized M.Tech Projects | ✓ Thesis Writing | ✓ Research Paper Writing | ✓ Plagiarism Checking | ✓ Assignment Preparation | ✓ Electronics Projects | ✓ Computer Science | ✓ AI ML | ✓ NLP Projects | ✓ Arduino Projects | ✓ Matlab Projects | ✓ Python Projects | ✓ Software Projects | ✓ Readymade M.Tech Projects | ✓ Java Projects | ✓ Manufacturing Projects M.Tech | ✓ Aerospace Projects | ✓ AI Gaming Projects | ✓ Antenna Projects | ✓ Mechatronics Projects | ✓ Drone Projects | ✓ Mtech IoT Projects | ✓ MTech Project Source Codes | ✓ Deep Learning Projects | ✓ Structural Engineering Projects | ✓ Cloud Computing Mtech Projects | ✓ Cryptography Projects | ✓ Cyber Security | ✓ Data Engineering | ✓ Data Science | ✓ Embedded Projects | ✓ AWS Projects | ✓ Biomedical Engineering Projects | ✓ Robotics Projects | ✓ Capstone Projects | ✓ Image Processing Projects | ✓ Power System Projects | ✓ Electric Vehicle Projects | ✓ Energy Projects Mtech | ✓ Simulation Projects | ✓ Thermal Engineering Projects

© 2024 All Rights Reserved Engineer’s Planet

Digital Media Partner #magdigit