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Power System Reliability Assessment Incorporating

Cyber Attacks Against Wind Farm Energy

Management Systems
Yichi Zhang, Yingmeng Xiang, and Lingfeng Wang

Abstract— By exploiting the vulnerabilities in cyber compo-
nents, an attacker could intrude into the wind farm supervisory
control and data acquisition (SCADA) system and energy man-
agement system (EMS) and maliciously trip one or multiple wind
turbines. The reliability of the overall power system could thus
be impacted by the performance of wind farms. In this paper,
cyber attack scenarios concerning cyber components or networks
are considered in the integrated wind farm SCADA/EMS system
architecture. Two Bayesian attack graph models are adopted to
represent the procedures of successful cyber attacks, and a mean
time-to-compromise model is used by considering different attack
levels and various vulnerabilities. Frequencies of successful cyber
attacks on the wind farm SCADA/EMS system are estimated. A
procedure for evaluating the power system reliability is proposed
by considering wind turbine trips caused by various cyber
attacks. Simulations are conducted based on a typical IEEE
reliability test system. Simulation results indicate that the overall
system reliability decreases when the frequency of successful
attacks on the wind farm SCADA/EMS system and skill levels
of attackers increase.

Index Terms— Cyber security, cyber-physical power systems,
wind farm energy management system, power system reliabil-
ity, Bayesian attack graph model, mean time-to-compromise,
expected energy not supplied, loss of load probability.

NOMENCLATURE

ARMA(m, n) Autoregressive Moving Average model

with m autoregressive terms and n

moving average terms.

AGC Automatic Generation Control

BMW Bear Mountain Wind

CPS Cyber-Power System

CSMA/CD Carrier Sense Multiple Access with

Collision Detection

DERFEM Duality Element Relative Fuzzy Evaluation

Method

DB Database

DMZ Demilitarized Zone

EENS Expected Energy Not Supplied

EMS Energy Management System

GDA Grid Data Acquisition
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HTTP Hyper Text Transfer Protocol

ICCP Inter-Control Center Communications

Protocol

ICT Information and Communications

Technology

IDS Intrusion Detection System

IEC International Electrotechnical Commission

ISO International Organization for

Standardization

LAN Local Area Network

LOLP Loss of Load Probability

MCS Monte Carlo Simulation

MITM Man-in-the-Middle

MTTC Mean Time-to-Compromise

MTTR Mean Time-to-Repair

NFS Network File System

PDI Process Data Interface

PLC Programmable Logic Controller

POI Point of Interconnection

RFE Redundant Front Ends

RTS 79 IEEE Reliability Test System 79

RTU Remote Terminal Unit

RSH Remote Shell

SCADA Supervisory Control and Data Acquisition

SCU Substation Control Unit

SG Sub-Goal

SITL System-in-the-Loop

SSH Secure Shell

SSL Secure Socket Layer

SSMARS System Stability Monitoring and

Response System

VCS Voltage Control System

VPN Virtual Private Network

WAMS Wide Area Measurement Systems

WAN Wide Area Network

WTCP Wind Turbine Control Panel

WTCS Wind Turbine Control System

αt Normal white noise at time t

C Condition

C M Countermeasure

DB Database

https Hyper Text Transfer Protocol over Secure

Socket Layer

L Privilege

N Connection

n f s Network File System
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OG Overall Goal

P1 Probability that the attacker is in process 1

rsh Remote Shell Service

S Service

ssh Secure Shell

T Overall Compromise Time

t1, t2, t3 Expected Time in Process1, 2, and 3

u Probability of the Unsuccessful Process 2

V Vulnerabilities

yt Value of the time-series at time t

∅i , θ j The ith autoregressive parameter and the

jth moving average parameters

σ 2
a Deviation of the white noise

SW t Simulated wind speed at time t

µt , σt Mean value and standard deviation of the

observed wind speeds at time t

Pr Rated power of the wind turbine

Vci , Vr , Vco Cut-in speed, rated speed and cut-out speed

of the wind turbine

τ1, τ2, τ3 Constants for calculating wind power

Va (t) System security index at time t

Pgen (t) Total conventional generation at time t

Pload (t) Total load demand at time t

Pw Wind turbine power output

�Pat tack(t) Wind power that can be tripped by the

attackers at time t

nturbine Number of wind turbines

tc Time-to-compromise

tr Time-to-repair

U A random number within [0, 1]

I. INTRODUCTION

The utilization of the renewable energy is increasing rapidly

and steadily in recent years. In 2013, all renewable energy

resources have delivered about 13% of the electricity in the

U.S., and the wind power takes about 4.13% of the electricity

generation and has become the fifth largest electricity source.

In Iowa and South Dakota, wind power has exceeded 25% of

the total electricity production. Texas owns the largest installed

wind capacity and its electricity generation from the wind

energy is 35.9 million MWh, which is enough for supplying

3.3 million homes [1].

With the development of wind turbine technology, large

scale wind farms are being developed in many countries. It

is anticipated that 20% of U.S. electricity will be provided by

the wind energy, which will be 5.8 billion MWh by 2030 [2].

The wind farms might be enabled with the control capabilities

of a power plant [3]. With the increased and concentrated

penetration of wind power into the power grid, the power grid

nowadays is becoming more dependent on the wind energy

production, and the performance of the overall power system

will be inevitably affected by the operations of wind farms

[4].

Information and communications technology (ICT) is

important for the coordination between wind farms and the

power system. The supervisory control and data acquisition

(SCADA) system and energy management system (EMS) are

crucial in monitoring, operating, and protecting both wind

farm generators and the power system [3]. The wind farm

SCADA can be used to configure and modify parameters of

the individual physical component or the whole wind farm. It

may also optimize the timer, and force machines to operate

in particular modes, such as operating the machines at lower

power [5]. Wind power companies may own multiple wind

farms and could integrate them into a single wind farm EMS,

where the main control is from the control center through the

control wide area network (WAN) [4].

Cyber attacks are emerging threats to the modern power

systems. Power system network has become an attractive

target of the malicious groups and individuals. For instance,

it is reported that the National Grid is under the minute-by-

minute threat of cyber attacks, [6]. The SCADA/EMS is of

specific concern among the cyber systems in the power system.

By attacking the SCADA/EMS system, the performance of

the power system may be impacted. Malicious code such as

Stuxnet has successfully intruded into the industrial SCADA

system and resulted in severe impacts [7]. As more zero-day

vulnerabilities are being exploited, control systems may be

attacked without noticing the vulnerability exploits. This will

bring more serious impacts to the power system [8]. Reference

[9] estimated the impact on the SCADA system brought by the

data integrity attacks. With successful attacks on the Automatic

Generation Control (AGC) loop, the magnitude of the load

generation imbalance indicates severe impact could be brought

to the AGC of the power system. In [10], possible cyber attacks

that may occur on devices of industrial control systems are

considered. These cyber attacks are also classified based on

their impacts on the key control loops in the power system.

Cyber attacks on the wind farm SCADA/EMS systems may

result in widespread disruptions of electric power systems

considering the rapidly increasing penetration of wind power.

Therefore, investigations on the cyber security of the wind

farm SCADA/EMS systems are much needed [4]. With higher

integration of wind generation, as well as the advanced cyber

components and networks, cyber attacks against the wind

generation will become a non-negligible factor which could

influence the proper operations of wind turbines. It is crucial

to account for the attacks against the wind generation when

evaluating the overall power system reliability. However, lim-

ited work associated with this critical topic has been conducted

so far.

In this paper, quantitative evaluation of the cyber attack

on the wind farm SCADA/EMS is carried out. A modified

Bayesian attack graph model is used to describe the intrusion

processes into different wind farm SCADA/EMS networks.

A mean time-to-compromise (MTTC) model [11] is used

for estimating average time intervals of successful attacks on

targeted cyber components in the wind farm SCADA/EMS

system. MTTCs consumed on vulnerability exploits in wind

farm SCADA/EMS networks are calculated, and frequencies

of successful attacks on the targeted cyber components are

evaluated. Wind turbines are tripped when false commands are

sent through the penetrated cyber components. With a forensic

mean time-to-repair (MTTR) of the intruded cyber component,

probabilities of successful cyber attacks against the wind
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farm SCADA/EMS system are calculated. By sending the

unauthorized trip commands to wind turbines or wind farms

after successful intrusions, breakers of the power system are

forced to trip, which leads to increased outage intervals of

physical components. Finally, Monte Carlo simulation (MCS)

is used to perform the reliability analysis of the power system.

The major contributions of this paper are summarized as

follows: (1) Quantitative analysis is conducted to investigate

the MTTCs of the wind farm related control systems. (2) To

the best of our knowledge, this is the first paper which includes

cyber attacks against wind generation in wind integrated power

system reliability evaluation.

The remainder of the paper is organized as follows. In

section II, the related work of cyber attacks on common and

wind farm SCADA/EMS systems is reviewed, and research

challenges on wind farm SCADA/EMS are considered. In

section III, the architecture of the wind farm SCADA/EMS

system is proposed, and five cyber attack scenarios on the

wind farm SCADA/EMS system are described. In Section IV,

two Bayesian attack graph models and the MTTC model are

discussed. In section V, the wind speed is modeled, which is

integrated into the power system reliability model. In section

VI, with the attack graph and MTTC models, time intervals of

successful cyber attacks on different wind farm SCADA/EMS

components are calculated. And the reliability of the power

system is evaluated considering various cyber attacks on the

wind farms. The expected energy not supplied (EENS) and

loss of load probability (LOLP) values for IEEE reliability test

system 79 (RTS79) are estimated based on the MCS. Finally,

the paper is concluded in section VII.

II. RELATED WORK

A. Quantitative Assessment of Cyber Threats on the

SCADA/EMS System

A number of quantitative methods on the vulnerability

assessment have been proposed for the SCADA/EMS system.

For instance, in [12], a risk assessment framework is proposed

to enhance the robustness of the power system against cyber

attacks. The vulnerability of the cyber system is evaluated with

the Duality Element Relative Fuzzy Evaluation Method (DER-

FEM), and the attack scenarios are illustrated with the attack

graph. With the System Stability Monitoring and Response

System (SSMARS), the impact of intrusions on the power

system is monitored in real time, and the power system stabil-

ity is evaluated. And [13] proposes a cyber-physical test bed

by integrating the Real-Time Digital Simulator (RTDS) power

grid simulator and the Opnet’s System-in-the-Loop (SITL)

simulator. Two cyber attacks on the communication protocol

of the SCADA system are discussed, and vulnerabilities in

the cyber-physical system are evaluated in real time. In [14],

a co-simulation framework called cyber-power system (CPS)

tool is proposed. The communication between the SCADA

system, the power system, and the transmission operator is

simulated. Cyber attacks at the cyber layer and the impact

on the power system layer are analyzed in the real-time and

industrial simulation environment.

B. ICT in the Wind Farm SCADA/EMS System

Communication systems are widely used in the power grid

with the integration of the renewable energy generators. A

number of equipment and devices in the power grid are

monitored and controlled by the advanced communication

technologies, and the crucial decision-making support systems

and applications such as SCADA and EMS are in place. Both

renewable energy generators and power grid can be monitored

and protected by the ICT applications. Several studies have

been performed on the application of the ICT on the wind farm

SCADA/EMS system. For instance, in [3], communication

technologies for wind power integrated grid, such as power

line communications and wireless local area networks, are

reviewed. Meanwhile, a realistic renewable energy project

is analyzed based on the communication systems in Bear

Mountain Wind (BMW) farm. Reference [10] proposes typical

communication architectures of the local wind farm control

and the wind control center. Functionalities and devices of the

wind control center and other control centers are compared. In

[15], the offshore wind farm is considered as a local area net-

work (LAN), and LAN access techniques such as Ethernet and

International Organization for Standardization (ISO) models

are integrated into the offshore wind power system. Reference

[16] discusses the communication technologies in the wind

turbine control system (WTCS) and wind park control system.

It was found that the wind park communication network

adopts the switching techniques and Carrier Sense Multiple

Access with Collision Detection (CSMA/CD) network access

method. And an interactive cyber-based protocol between the

power system and the wind farm was proposed in [17], where

the interactive protocol between transmission networks and

the wind generator module leads to a system-wide stable

operation.

C. Vulnerability Assessment on the Wind Farm SCADA/EMS

System

It is crucial to quantitatively evaluate the impact brought

by the cyber vulnerabilities and attacks on the wind farm

SCADA/EMS system. However, limited work associated with

this pressing topic has been conducted so far. In [4], three

architectures of wind farm SCADA networks are proposed,

and vulnerabilities and potential cyber attacks on the SCADA

system of the wind farm are identified. Various cyber intrusion

scenarios are considered on the wind farm SCADA system,

and the impacts on power system dynamics brought by cyber

attacks are analyzed. Reference [18] proposes a cyber security

architecture for the wind farm connected power grid. Secure

communication of wind connected electric grid is discussed,

and data transmission and virtual private network (VPN) are

considered to evaluate the impact brought by cyber attacks on

wide area measurement systems (WAMS). A comprehensive

vulnerability branch assessment indicator of the wind farm

connected power grid is proposed in [19]. Static energy

function and complex network theory are used to model the

assessment indicator. The indicator is adopted on the double-

fed wind farms, which are contained in the IEEE-30 bus

system. It is found that access points of the wind farms and
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vulnerabilities of branches in the power grid could impact each

other in an interdependent manner.

D. Power System Reliability Evaluation Associated with

Wind Energy

Power system reliability evaluation is to estimate the capac-

ity and adequacy of the power system for supplying power to

the customers with the desired quality of service. The deploy-

ment of wind energy in a smart grid environment inevitably

has a significant influence on the power system reliability. In

[20], the generating capacity of the power system is evaluated

including wind energy. In [21], polulation-based intelligence

search is used to accelerate the reliability evaluation of power

grid with wind energy peneration. In [22], the fundamental

factors, models and methods related to wind integrated system

reliability evaluation are analyzed and compared. These studies

focus on the physical impacts of the wind energy, while the

cyber vulnerabilities are not considered.

E. Research Challenges in Wind Farm SCADA/EMS System

Compared with the common SCADA/EMS in the bulk

power system, more vulnerabilities and unauthorized accesses

are involved in the wind farm SCADA/EMS. Possible attacks

and corresponding countermeasures should be considered con-

cerning the additional vulnerabilities. For instance, the wind

turbine control panel (WTCP) of the wind farm is able to

control and monitor the status of wind turbines, whereas it pos-

sesses limited cybersecurity capabilities to prevent or mitigate

the cyber intrusions, thus it can be considered as an additional

unauthorized access point of the intrusion into the wind farm

SCADA/EMS [4]. Also, optical fibers are heavily used in

the communication of wind farms. However, by using the

advanced tapping method such as injecting additional light into

the fibers, measurement and commands between the control

center and wind farm substations could be modified. Thus

the data encryption approaches and fiber intrusion detection

system (IDS) are needed to ensure the cybersecurity of the

wind farm.

In [3], research challenges in communication of wind farm

SCADA are discussed. Robust two-way communication tech-

nologies should be developed, and capabilities of the wind

farm SCADA, such as wind energy efficiency and control

speed, can thus be improved. Severe security hazards may be

caused by an energized electrical island, an efficient detection

system is thus needed to fix the islanding problem. Wireless

and programmable logic controller (PLC) technologies are

proposed in [3] as approaches for island detection. At the

same time, due to the distributed networks of the wind farms,

wireless technologies of the wind farm SCADA/EMS are nec-

essary for monitoring, authorization, and control. Also, wind

energy is highly unstable and intermittent, dynamic control

of the power system should be in real-time and accurate, thus

more efficient and reliable communication systems are needed

for the synchronized phasor and data management of the wind

energy. Finally, standardization of communication protocols in

the wind farm SCADA/EMS is necessary, so that wind farms

can be controlled and monitored more efficiently [3].

III. CYBER ATTACK SCENARIOS ON THE WIND FARM

EMS

A. Architecture of the Cyber Network in the Wind Farm EMS

Fig. 1 illustrates the representative architecture of the wind

farm SCADA/EMS system, which is used to control and

monitor the generation and distribution of the wind power.

In Fig. 1, the network of the wind farm SCADA/EMS is

divided into five sub-networks: wind farm local control LANs,

the wind farm main control center LAN, the backup remote

control LAN, and communication links which connect the

LANs through the control WAN.

The wind farm local control LAN is either a stand-alone

wind farm SCADA network in the control room, or a partially

integrated network which integrates the corporate network for

business [4]. In this study, only the stand-alone wind farm

SCADA network is considered, which is used to provide the

monitoring and control functions for the wind turbines in

one farm. In the local control LAN, communication protocols

implemented in wind farm communication networks are Inter-

national Electrotechnical Commission (IEC) 61400-25, which

provides the SCADA system with the ability to communicate

with any device in a standard approach [23]. The real-time

command and measurement information are presented on the

workstation, and the long-term data received from the mea-

surement components are stored in the historical database. The

wind farm SCADA performs the function of acquiring the grid

data, which are the measured electrical variables at the wind

turbines. For instance, the METEO function installed in the

wind farm SCADA is used for collecting meteorological data

such as wind speed and temperature. The monitored wind farm

data are processed by the SCADA server and transmitted to

the application server. Through the workstation, the operators

are able to monitor the electrical states and modify parameters

of the physical components in the wind farm [3]. Unauthorized

user may intrude into the local control LAN and control the

workstation, thus malicious command may be sent to turn off

the wind turbines or change the parameters of the controller.

In the wind farm main control center, there are multiple

units of redundant front ends (RFEs) in the hot standby

mode. These RFEs are used for receiving and delivering the

information from or to the wind farms. The information of

each wind farm is stored in the servers of the corresponding

RFE temporarily and will be updated with the constant fre-

quency. There are M units of control center operator consoles

to present the information acquired by the RFEs. And the

intruders may send the unauthorized operation or dispatch

commands to different wind farms. The video wall exhibits

the graphical output, which acquires state information of the

wind farms from the consoles. Two historian servers are

used for restoring historical data, which are received from

the front ends or the wind farms. The redundant hard disk

can be accessed by both servers so that the availability of

historian data acquisition can be improved. The web server

stores the real time and historical information through the

remote clients [23]. The Inter-Control Center Communications

Protocol (ICCP) server is able to respond to requests of data

exchange from other ICCP clients in the backup remote control
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Fig. 1. A representative wind farm SCADA/EMS architecture.

centers. Multiple separated wind farms are integrated and

monitored by the EMS installed in the wind farm control

center. The wind farm control center EMS is able to regulate

the voltages of wind turbines, coordinate the outputs of the

wind farms, and provide the reactive power support for the

utility system [24]. The backup remote control center LAN is

considered as the backup of the main control center LAN, and

it is able to control the remote SCADA system of the wind

farms.

In order to effectively manage a large number of wind farms

from one control center, two protocols (i.e., IEC 61850-7 and

IEC 61400-25) are developed. With these protocols, a com-

mon communication architecture for monitoring substations

and controlling wind farms can be realized. A standardized

communication protocol is used between networks in the

SCADA/EMS system. Common communication protocols of

wind farm substations are IEC 60870-5-101, DNP 3.0, Modbus

remote terminal unit (RTU) and TCP [10]. Energy meters

are used to record the energy data and verify the energy

consumption. Energy meters are connected to a serial bus,

which is linked by a serial-Ethernet adapter to the wind farm

SCADA/EMS system. Energy data are downloaded to the

meter via IEC 60870-5-102 over Ethernet or other standard

protocols. Protocols among wind turbines are usually not

standard. In order to prevent the third parties from controlling

communications of the wind turbines or overriding the wind

farm SCADA, wind turbine manufactures usually define their

own protocols for wind turbine PLCs [10].

Since the wind farms are additional resources to the power

systems, besides wind farms and wind turbines, remote control

is the additional difference between wind farm SCADA/EMS

and the usual SCADA/EMS. The SCADA remote control is

used for remotely monitoring data of the wind farm, and

authorized users are allowed to access the SCADA database

and modify parameters of the data controller [3]. At the same

time, modules in the wind farm SCADA/EMS specifically

designed for wind energy measurement and commands are

different from the common SCADA system. For instance, in

Fig. 2, communication system and interface of the BMW wind

farm SCADA are designed based on communications between

substations and wind farms [3].

In the modules of the BMW wind farm SCADA system

[3], the SCADA REMOTE module is used for monitoring

data from the wind farms, and controller parameters can be

modified in the SCADA database through this module. Real-

time wind farm data is exchanged through the process data

interface (PDI), and electrical variables are measured from the

point of interconnection (POI) substation by using the grid data

acquisition (GDA) module. Meanwhile, electrical states are

monitored and remote switching operation is transmitted by

the substation control unit (SCU) in the wind farm substation.

Dynamic voltage at the POI substation can be controlled by the

voltage control system (VCS), which can use reactive power

capability of wind turbines online. And the METEO module is
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Fig. 2. Wind farm SCADA communication system.

Fig. 3. Cyber attack on WTCP.

utilized for collecting meteorological data, such as wind speed

and direction, and temperature. All status and measured data

are transmitted with the standard protocol, such as IEC 60870-

5-10, through the SCADA system. Status data are updated at

most four times per second.

B. Cyber Attack Scenarios and Paths to Wind Farm EMS

When the attacker has successfully intruded into the wind

farm SCADA/EMS system, false commands such as trip

commands will be launched from the target components, and

the wind turbines will thus be stopped. As a result, the relia-

bility of the whole power system will be impacted. Different

network configurations in the wind farm SCADA/EMS and

intrusion steps of the targeted components are discussed in

the following.

1) Attack on WTCP: WTCP is a control and monitor-

ing unit with the display screen and operating keys.

Besides acquiring the instantaneous operating status and

measurement values of the wind turbines, operations

of configuration to the connected wind turbine can be

performed through one WTCP [4]. Since the WTCP is

normally mounted on the tower base and is easily acces-

sible, it is not difficult to be accessed by unauthorized

attackers. Thus it can be considered as the easiest target

for the attacker. It is assumed the attacker is able to

directly reach the WTCP by bypassing the firewall. By

exploiting vulnerabilities in the WTCP, or by cracking

the pin of the WTCP [4], the attacker is able to connect

his intrusion device to the WTCP. Then he may gain

the control privilege of the WTCP by using the buffer

overflow attack, and malicious commands can be sent to

Fig. 4. Cyber attack on wind farm local control LAN.

the wind turbine controlled by the intruded WTCP. The

intrusion process is illustrated in Fig. 3.

2) Attack on Local Control LAN of One Wind Farm:

Internal attack is possible on various LANs of the wind

farm SCADA/EMS system, the attacker may obtain the

physical access to the LAN and send the unauthorized

command, but in this study, it is assumed that all attacks

are launched from outside networks. By exploiting vul-

nerabilities in the component which is able to communi-

cate with the Ethernet, the attacker is able to intrude into

various internal LANs of the wind farm SCADA/EMS

system. In the next step, by exploiting vulnerabilities

of the services executed on the intermediate component,

the attacker intrudes into the cyber device connected to

the firstly compromised component. The targeted com-

ponent can thus be reached by exploiting corresponding

vulnerabilities. If the targeted component is reached,

the intruder will upgrade his privilege by using buffer

overflow attack. When the attacker finally possesses the

root privilege, the commands will be sent to the wind

turbines.

The attack target in the wind farm control room is the

wind farm workstation. The network configuration and the

attack process are shown in Fig. 4. When the attacker has

successfully intruded into the control room by bypassing the

firewall, he needs to intrude into either the communication

server or the application server. The communication server,

which is similar to the ICCP server, is used to process the

information retrieved from or sent to the control center, and it

is not allowed to directly communicate with the workstation

[25]. The application server stores the measurement data in

the real-time database, and it transmits control commands to

the workstation. When the attacker has gained the privilege to

control the workstation, wind turbines controlled by the wind

farm being attacked will receive the fabricated trip commands

and be forced to stop.

1) Attack on Wind Farm Backup Remote Control LAN: The

remote control center is used to coordinate the main

control center, so that remote monitoring and control on

the wind farms can be realized. In Fig. 5, the attack

procedure on the remote control LAN is illustrated.

Since the remote control is used to communicate with
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Fig. 5. Cyber attack on wind farm backup remote control LAN.

Fig. 6. Cyber attack on wind farm control center LAN.

the main control center, no web server is installed in the

remote control LAN. The attacker can access the remote

control network when the firewall is bypassed, then he

is able to intrude into the ICCP server. By exploiting

the vulnerabilities in the application server connected

to the ICCP server, and obtaining its user privilege. The

intruder will finally access the operator console and send

trip commands with a permitted identity.

1) Attack on Wind Farm Control Center LAN: Fig. 6

illustrates the network configuration and the attack on

the control center LAN. The attacker needs to intrude

into the web server, which may be installed in the

demilitarized zone (DMZ) of the network. When the

attacker has bypassed the second firewall which sepa-

rates the DMZ and the control center LAN, he needs

to successfully reach the ICCP server, which is used

for communications with the backup control centers.

The remaining steps are similar to the attacks on the

backup remote control LAN, which are obtaining the

user privileges of the application server and the operator

console. Compared with the intrusion into the backup

remote control LAN, it should be noticed that the

attacker needs to exploit different vulnerabilities in the

control center LAN.

2) Attack on Communication Links of Wind Farms:

Communication links that may be attacked in the

SCADA/EMS are those between the control center LAN

and the wind farm local control LAN, as well as the

links between WTCPs and wind turbines. The man-

in-the-middle (MITM) attack can be launched to the

communication links. Since optics fibers are mostly used

as the material of the wind farm communication links,

by installing surreptitious taps on the optical fiber cable,

additional light and fake information can be injected

to the communication links [4]. Also, the attacker may

obtain necessary information by eavesdropping and ana-

lyzing the light information. With traffic monitoring

and analysis in the communication links, the attacker

may understand the traffic patterns, and the data of

fake measurement will be sent to the operators in the

main wind control center or local control room. Finally,

malicious control commands will be sent from operators

to wind turbines [4].

In all attack scenarios mentioned above, after the attacker gains

the desired control privellige, he can perform cyber attacks in

multiple ways, such as stealing the information, shutting down

the wind turbines, disrupting the voltage, and interrupting

the power system operation. In some extreme cases, the

wind turbine could be physically damaged, though it is a

rather difficult task considering the associated monitoring and

protection functionalities. This paper focuses on the long-term

power system relibility whose analysis is mainly concerned

with the working statuses of the wind turbines. If a wind

turbine is tripped, its status will become down, which will

cause the decrease of total generation capacity and may result

in load loss. This is a major way for wind turbines to impose

negative effect on the power system and it is normally more

detrimental than the information loss. Besides directly tripping

the wind turbines, attackers with advanced skills can control

the wind turbines and disrupt the frequency or voltage. As

the operation of wind turbines is continuously monitored by

the control center, wind turbines will be tripped by the power

system operator if they are operating abnormally. In short, the

wind turbines could be directly or indirectly tripped due to

the cyber attacks, and as a result detrimental impact will be

caused to the power system operation.

IV. CYBER ATTACK MODEL OF WIND FARM EMS

A. Bayesian Attack Graph Models and Probabilities

Fig. 7 illustrates a Bayesian attack graph model of vul-

nerabilities in the wind farm control center LAN, which is

the minimal attack path to the root privilege of the operator

console. In the attack graph G(V ∪C), two types of nodes are

considered: exploit to vulnerability V and component condi-

tion C . The condition is distinguished as service (S), which

is shown as servi se(host); the connection (N) is represented

as < sourcehost, destinationhost >; and the privilege (L)

is denoted as privi lege(host). An exploit is executed only

if all its pre-conditions are satisfied, and a condition can be

the post-condition of an exploit, or satisfied initially as the

pre-condition [26]. Vulnerabilities are illustrated by ovals with

white or light blue colors representing the known or zero-

day vulnerabilities, respectively. Zero-day vulnerabilities are a

subset of documented vulnerabilities over the reporting period.

They are vulnerabilities that have been exploited by attackers

before corresponding patches are released. The component

in the networks is affected before the vulnerabilities in the

component are found [27]. By exploiting the zero-day vul-

nerabilities, severe effects will be brought to the wind farm

SCADA/EMS network. Without prior knowledge of the zero-

day vulnerabilities, the faults resulted from software flaws

are less predictable. Also, since existing metrics for known

vulnerabilities are inefficient to an unknown vulnerability, it

is difficult to measure the potential impact of the zero-day

vulnerabilities [28].

One vulnerability can be exploited when its Si , Ni , and

L i are satisfied. In Fig. 7, privilege user(0) represents the

host of the attacker, it should exist and be connected to the
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Fig. 7. Bayesian attack graph models of the wind farm control center LAN.

web server, which is shown by user(1). Also, the connection

< 0, 1 > between the intruder and the web server should

be satisfied. https(1) is the Hyper Text Transfer Protocol

(HTTP) over Secure Socket Layer (SSL) service executed on

the web server, it should be available if the intruder for the

unauthorized access to the web server. The user privilege of

the web server is obtained when the exploit 〈https, 0, 1〉 of

the https service is executed. In the next step, 〈iccp, 1, 2〉

represents the vulnerability in the ICCP server. In order to

exploit vulnerabilities in the ICCP server, the intruder should

gain the user privilege user(1). At the same time, the service

iccp(2) and the connection between the web server and the

ICCP server < 1, 2 > should be satisfied. By exploiting

vulnerability < iccp, 1, 2 >, the intruder is able to obtain

the user privilege user(2) of the ICCP server. In order to

reach the application server, the attacker can either exploit

the vulnerability < rsh, 2, 3 > or < ssh, 2, 3 >, which are

vulnerabilities in the remote shell (rsh) service, or Secure

Shell (SSH) service found on the application server. Then

the user privilege of the operator console (i.e., (4) ) can

be gained if one of vulnerabilities in < n f s, 3, 4 > or

< DB, 3, 4 > are exploited. n f s(4) and DB(4) indicate the

Network File System (NFS) service and the Database (DB)

service, respectively. Finally, the root privilege of the operator

console, which is represented as root (4), can be obtained by

the attacker if the buffer overflow is caused at user(4).

Fig. 8 illustrates the Bayesian attack graph model of the

communication link between two networks or components of

the wind farm SCADA/EMS system. The model is composed

of three layers. The first layer represents countermeasures

C M i against attacks. The second layer is denoted by sub-goals

SGi . By bypassing or defeating corresponding countermea-

sures C M i , the sub-goals are to be reached. The third layer

is composed of the overall goals. One overall goal OGi can

be achieved by reaching the connected sub-goals SGi .

Three steps are necessary to calculate the probabilities that

Fig. 8. Bayesian attack graph model of the communication links.

attacker is able to successfully reach the goal condition. The

first step is the estimation of probability that an attacker is able

to execute each exploit independently. In the second step, the

pre-conditions of the vulnerability are calculated. In the third

step, each probability of the successful exploit resulting in its

goal condition is calculated. Since different exploits between

two conditions can be selected by the attacker, the ratios of the

exploit selections are calculated with the backward traversal

approach. The detailed approach to determining the probability

that the attacker successfully reaches the goal condition is

discussed in [11].

B. MTTC Model of Cyber Attacks

By considering various skill levels of the attackers, the

modified MTTC model [11] is applied to estimate the time

interval that one vulnerability can be exploited by attackers.

The skill level of an attacker indicates the ratio of exploitable

vulnerabilities. Four levels of attackers are assumed, which are

novice, beginner, intermediate, and expert [29], and the ratio

of the successful vulnerability exploit will increase when the

skill level is higher.

The procedures of intruders are divided into three statistical

processes. Process 1 illustrates that the attacker has found

one or several exploits to the identified vulnerabilities. The

process 2 is mutually exclusive to the process 1, which means

no exploits are found by the attacker, but one or several

vulnerabilities are identified. Process 3 illustrates neither vul-

nerabilities nor exploits are available to the attacker. Process

3 is parallel to processes 1 and 2.

The overall compromise time T of one exploit is estimated

by considering the time consumed by all three processes:

T = t1 P1 + t2 (1 − P1) (1 − u) + t3u(1 − P1) (1)

where t1 is the expected time in process 1, and P1 is the

probability that the attacker is in process 1. t2 represents the

average time in process 2, u indicates the probability of the

unsuccessful process 2. t3 is the expected time of process 3.

With the attack graph and the overall time of each exploit,

the MTTCs of the goal conditions in various networks or

links are calculated. The MTTC of a goal condition is the

sum of portioned overall time of each exploit leading to its

post-condition.
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Given the attack graph G(V
⋃

C) and one goal condition

c, the MTTC of this goal condition is:

MT T C (c) =

∑

vi∈V T (vi ) · p(vi ∧ c)

p(c)
(2)

where T (vi ) is the overall time needed to exploit the vul-

nerability vi . p(vi ∧ c) represents the probability of the

successful vulnerability which leads to the goal condition,

and p(c) represents the probability that the goal condition is

successfully reached.

The MTTC to the target component is the sum of all MTTCs

of goal conditions, which is represented as:

MT T C =

n
∑

j=1

MT T C(c j ) (3)

It should be noticed that zero-day vulnerabilities impact

models of the probability that attackers are able to successfully

reach the goal condition, as well as the MTTC models. In

the first step of the Bayesian attack graph modeling, the

dependent probability of the successful exploit on a zero-

day vulnerability is assumed as 0.08, whereas the dependent

probability of the exploit on a known vulnerability is between

0 and 1. Also, in the MTTC model, more average time is

needed for discovering and creating the zero-day vulnerability,

thus the MTTC on exploiting one zero-day is larger than the

MTTC on exploiting the known vulnerability exploit. More

detailed discussions can be found in [11].

V. WIND FARMS AND POWER SYSTEM RELIABILITY

ANALYSIS

A. Wind Power Modeling

The wind speed needs to be forecasted in a reasonably

accurate fashion in the reliability assessment of a power system

containing wind farms. The wind speed in a wind farm is time-

varying and is associated with the wind speeds in the previous

hours. There are a number of wind forecasting methods which

can be used in power system reliability assessment. In this

study, the autoregressive moving average (ARMA) [20] model

is adopted. The general ARMA model with m autoregressive

terms and n moving average terms is denoted as ARMA (m,

n), which is shown as follows:

yt = ∅1 × yt−1 + ∅2 × yt−2 + · · · + ∅m × yt−m + αt − θ1

× αt−1 − θ2 × αt−2 − · · · − θm × αt−n (4)

where yt represents the value of the time-series at time t;

∅i (i = 1, 2, · · · , m) are the autoregressive parameters; θ j ( j =

1, 2, · · · , n) are the moving average parameters; and αt is a

normal white noise time-series denoted by αt ∈ (0, σ 2
a ) and

σ 2
a is the variance.

The simulated hourly wind speed SW t can be obtained as

follows [20]:

SW t = µt + σt × yt (5)

where µt is the mean value of the observed wind speeds at

hour t and σt is its standard deviation.

The power output of a wind turbine generator Pw(SW t )

can be calculated using the nonlinear function relationship [30]

between the wind turbine output and the wind speed as shown

below:

Pw(SW t )

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 ≤ SW t < Vci

(τ1 + τ2 × SW t + τ3 × SW 2
t )Pr Vci ≤ SW t < Vr

Pr

0

Vr ≤ SW t < Vco

SW t ≥ Vco

(6)

where Vci , Vr and Vco are the cut-in speed, rated speed, and

cut-out speed, respectively; and τ1, τ2 and τ3 are constants

associated with the speeds Vci , Vr and Vco [30].

B. Attack Strategy Modeling

Wind turbines in a wind farm are controlled by multiple

cyber control systems at different levels, such as WTCP, wind

farm local control LAN, and the control center LAN. If one

control system is targeted and compromised, the attacker could

gain the privilege to disconnect the wind turbines associated

with that control system. The time required for compromising

the control system is described by the time-to-compromise

tc. Its mean value is modeled by MTTC in section IV,

and it refers to the expected time required for the attacker

to gain the desired control privilege. The reasonable and

intelligent attacker will not send fabricated commands to trip

the wind turbines immediately after he gains the privilege, as

there might be no wind at that moment. The attacker may

remain undetected and wait for the optimal moment to launch

the attack. However, when the security countermeasures are

upgraded, the attacker may be detected or isolated after a

limited time interval. For instance, if the password is updated

before the vulnerable device is accessed, the attacker will lose

the privilege of the device and need to restart the intrusion

process. As the intrusion is detected by the IDS, the power

system operator will take effective countermeasures to isolate

the attacker. Therefore, in this study, the allowed hidden time is

assumed to describe the maximal time the attacker can remain

hidden even if no attack occurs. The allowed hidden time

represents the capability to detect the intrusion of the power

system. If an attack is launched during the allowed hidden

time, the attacked wind turbine will be in the failure status for

a certain time interval. The wind turbine failure time due to the

attack is represented by the time-to-repair tr and its mean value

is denoted as mean time-to-repair (MTTR). The time-to-repair

mainly refers to the time needed for computer forensics and

device restart. And in this time interval the intrusion will be

detected and the privilege of the attacker will be degraded with

various methods, such as changing the passwords or limiting

the access.

The time-to-compromise, allowed hidden time and time-to-

repair are illustrated in Fig. 9.

When the attack is prepared against the wind farms during

the allowed hidden time, the wind farm is unlikely to be

tripped if there is no wind or the load level is low. It is

reasonable for the attacker to attack the wind farms when the

conventional generation is low, the load demand is high and
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Fig. 9. Attack strategy illustration

the wind is strong. Considering these, an attack strategy is

developed based on Va (t).

Va (t) = Pgen (t) − Pload (t) − �Pat tack(t) (7)

where Va (t) is an index to measure the system state security;

Pgen (t) is the total conventional generation capacity at time t;

Pload (t) is the total load demand at time t; and �Pat tack(t) is

the wind power that can be tripped by the attacker. �Pat tack(t)

varies with time and depends on the privilege of the attacker.

If the attacker gains the privilege to control one wind turbine,

�Pat tack(t) equals Pw(SW t ); if the attacker can control the

whole wind farm, �Pat tack(t) can be calculated as follows:

�Pat tack (t) = Pw(SW t ) × nturbine (8)

where nturbine is the number of wind turbines in the attacked

wind farm.

The attacker estimates the system state and calculates Va (t)

during the allowed hidden time. An attack will be performed

when Va (t) is minimal, which is the tripping moment shown

in Fig. 9. It is noted that some highly intelligent attackers

could develop more sophisticated methods to determine the

tripping moment, which is beyond the scope of this paper.

The estimation of the tripping moment based on (7) and

(8) is essentially a minimization problem, which requires the

attacker to accurately predict the total conventional generation

capability, the wind generation and the load demands during

the hidden time. Generally, the number of conventional gen-

erators, the up/down status, and the generation capability of

each generator are fixed during the short hidden time, and

this information can be obtained by the attacker through cyber

sniffing, social engineering, or even some public data. After

obtaining the necessary information, the conventional gener-

ation capability can be readily known. And some methods

have been developed for predicting the load demand and wind

power generation. The load demand profile usually follows

a chronological pattern due to the related human activity

pattern. Intelligent attackers can reasonably predict the short-

term load demand if they are able to intercept the current and

historical load demand data. And the prediction can be made

through different methods, such as wavelet neural network

in [31] and functional time-series method in [32]. The wind

power forecast can be conducted based on multiple methods

to achieve an acceptable accuracy. For instance, attackers may

use the probabilistic hybrid approach in [33], or ARMA in

[34]. As generation and load forecasting is critical to power

system scheduling and operation, it is believed that more

advanced methods will be developed in the future research

of this area.

Even though the accuracy of the wind prediction has been

significantly increased by various forecasting methods, it is a

challenging task for the attackers to perfectly predict genera-

tions and load demands due to inevitable uncertainties in the

load demand and renewable generation. Also, the attacker may

have difficulties in obtaining the necessary data for performing

the prediction. Therefore, considering the inherent inaccuracy

of the prediction methods and the uncertain behavior of the

attackers, it is not guaranteed that the attacker is always able

to make the exact prediction and obtain the optimal tripping

moment described by (7) and (8). However, it is crucial for

the defender to be aware of the optimal tripping moment so

that countermeasures against the attacks could be enforced and

improved. And in this paper, a conservative assessment of the

security is performed by assuming that the attackers can obtain

the absolute minimum Va (t) in the power system adequacy

evaluation.

C. Reliability Evaluation Procedures

For a bulk power system, several wind farms can be inte-

grated and connected to different buses. In order to attack the

wind turbines, all control systems related to the wind turbines

could be chosen as attack targets by the attackers. Inspired

by the power system reliability assessment procedure in [35],

an integrated power system evaluation framework considering

the cyber attacks against the wind farms is proposed based

on sequential Monte Carlo simulation as depicted in Fig. 10,

which is detailed as follows:

(1) Model the reliability of major physical components in

the power system, mainly including the conventional gen-

erators and transmission lines. Generate a time sequence

representing the working status of each element.

(2) Model the wind speeds in each wind farm. This is

described by the ARMA model in Part A of Section V.

Generate a time sequence representing the working status of

each wind turbine.

(3) Generate an annual chronological curve for the load at

each bus.

(4) Randomly sample a tc for the selected target using tc =

−In(1 − U) × MT T C , where U is a random number within

[0, 1].

(5) Calculate Va (t) for each hour in the allowed hidden

time and determine the tripping moment.

(6) Randomly sample a tr for the selected target using tr =

−In(1 − U) × MT T R.

(7) Check if the sampling time is sufficient. If not, return

to step 4 or go to next step.

(8) Check if all the attack targets are sampled. If not, return

to step 4 or go to next step.

(9) Update the wind power output of each wind turbine

based on the sampling of steps 4-8.

(10) Sequentially sample the composite system state at

time t . A composite system state includes the load demands,

transmission line statuses, conventional generator statuses and
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Fig. 10. Integrated power system reliability assessment considering cyber
attacks against wind generations.

wind turbine power outputs.

(11) Evaluate the sampled composite power system state.

This is accomplished by performing the DC optimal power

flow analysis.

(12) Check if the stopping criteria are met or not. If not,

go back to step 10. The state sampling is conducted for 100

years.

(13) Calculate the desired reliability indices. In this study,

the indices evaluated are the expected energy not supplied

(EENS) and loss of load probability (LOLP).

VI. SIMULATION RESULTS AND ANALYSIS

A. Bayesian Attack Graphs and MTTCs of Targets

In order to simplify the attack graphs, nodes which represent

privilege (L) and exploits to vulnerabilities V remain, and the

nodes service (S) and connection (N) are omitted. In each

simplified attack graph, different numbers of known and zero-

day vulnerabilities are assumed in each component. The type

of vulnerabilities is assumed by the possible service executed

on the component. For instance, HTTPS is one possible service

executed on the web server in the wind control center. The

number of the zero-day vulnerabilities is assumed by the

complexity and the security mechanism of the cyber network.

Fig. 11. Attack graph model to compromise the WTCP.

Fig. 12. Attack graph model to compromise the local control LAN.

When more advanced security mechanism is adopted on the

crucial network, less known vulnerabilities will be available

to cyber intruders. In order to reach the targeted component

in the network, zero-day exploits should be created by the

attacker and more average time is needed for the successful

intrusion.

The Bayesian attack graph of the WTCP is illustrated in Fig.

11. The attack path between the intruder (user(0)) and the

target (root (1)) shows the processes to gain the root privilege

of the WTCP. Since the attacker may directly reach the WTCP,

it is assumed the user privilege can be gained by bypassing one

firewall and executing two exploits of the vulnerabilities on the

targeted WTCP. It is assumed that the executed exploits in the

target are two known vulnerability exploits < ssh, 0, 1 > and

< DB, 0, 1 >. And the attacker will obtain the root privilege

by exploiting the known root vulnerability < root, 1, 1 >.

The attack graph of the local control LAN for one wind farm

is illustrated in Fig. 12. Based on the network configuration, it

is assumed that the communication server and the application

server can be reached by the attacker. One known vulnerability

< RPC, 0, 1 > is assumed in the communication server.

The attacker may first breach the communication server and

obtain the user privilege, and he will exploit two vulnerabilities

in the application server, which are one known vulnerability

< rsh, 1, 2 >, and one zero-day vulnerability < ssh, 1, 2 > in

light blue color, and gain the user privilege of the application

server. He can also directly gain the user privilege of the

application server by executing the exploits < ssh, 0, 2 > and

< rsh, 0, 2 >. Then the attacker will reach the targeted wind

farm workstation by executing the exploit < DB, 2, 3 > and

< root, 3, 3 >.

Fig. 13 represents the attack graph of the backup remote

control LAN. Since the ICCP server is the only component

which communicates with the outside network, the intruder

should first attack the ICCP server. It is assumed that when one

zero-day vulnerability < iccp, 0, 1 > is exploited in the ICCP

server. The next cyber component is the application server,

it has two vulnerabilities to exploit, which are the known

vulnerability < rsh, 1, 2 > and the zero-day vulnerability

< ssh, 1, 2 >. And the operator console can be controlled

when the zero-day vulnerability < n f s, 2, 3 > and the root
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Fig. 13. Attack graph model to compromise the remote control LAN.

Fig. 14. Attack graph model to compromise the control center LAN.

vulnerability are exploited.

Fig. 14 illustrates the attack graph of the control center

LAN, which has the largest number of vulnerabilities to be

exploited. It is assumed that one zero-day vulnerability <

https, 0, 1 > is found in the web server, and one zero-day

vulnerability < iccp, 1, 2 > is exploited in the ICCP server.

< rsh, 2, 3 > and < ssh, 2, 3 > in the application server

are exploited as zero-day vulnerabilities. The user privilege

of the control center operator console can be gained by

exploiting one known vulnerability < DB, 3, 4 > and one

zero-day vulnerability < n f s, 3, 4 >, and the root privileges

of the operator console can be obtained by exploiting the

vulnerability < root, 4, 4 >.

On the communication links, one target is the link between

the WTCP and the wind turbine, and the other is the link

between the control center LAN and the local control LAN.

Since the first link can be found beside the WTCP, which is

not difficult to reach, it is assumed all vulnerabilities of the

link are known vulnerabilities. The link connected to the wind

farm may be equipped with several countermeasures, such as

encryption and physical protection. This will bring additional

difficulty to attackers, thus vulnerabilities in the link connected

to the wind farms are assumed as zero-day ones.

As the attack levels are novice, beginner, intermediate, and

expert, the fractions of the vulnerabilities that are exploitable

are assumed as 0.2, 0.4, 0.6, and 0.8. And the MTTCs of

gaining the control privileges on different targets in the wind

farm SCADA/EMS system are shown in Fig. 15. It can be

observed that as the skill levels of intruders increase, less

MTTC is needed for the successful intrusion. For the novice,

the MTTCs are between 105.3193 and 975.6548 days. The

beginner needs 32.9701 to 311.4075 days for the successful

attacks on the six targets. 17.8272 to 127.7913 days are needed

by attacker with the intermediate level, and only 8.3194 to

52.6561 days are needed by the expert for the successful

attacks. For the simplest WTCP network, MTTC of the novice

attacker is about 152 days, whereas the attacker with the expert

level needs only about 8 days.

It is also found that when more zero-day vulnerabilities are

exploited in the network, larger MTTC is needed to gain the

root privilege of the target component. With the same skill

level, more MTTC is needed for the successful attack on

the control center, which possesses the most complicated and

secure cyber network. Compared with the control center, the

Fig. 15. MTTC of cyber attacks on the wind farm SCADA/EMS.

TABLE I

MTTRS RELATED TO CYBER ATTACK TARGETS

network of the WTCP is the least complicated one, which has

only one firewall as the countermeasure. As all vulnerabilities

are assumed to be the known ones, the least MTTC is needed

for the successful attack on the WTCP.

B. Power System Reliability Evaluation Results

For the wind power modeling, wind turbines with a rated

power of 1.5 MW, and cut-in, rated and cut-out speeds of

4, 11.1 and 20 m/s, respectively are used in this study. The

physical failures of the wind turbines are not considered here

due to their relatively minor effect and the focal point of this

work. And the wind speed data of stations 9,366 and 1,732

from year 2004 to 2006 in [36] are analyzed and simulated by

the ARMA (3, 2) model. The average value of the simulated

wind speed is 9.0 m/s and 8.7 m/s for station 9366 and station

1732, respectively.

In this study, the simulations are conducted based on mod-

ified IEEE RTS79 systems [37]. The IEEE RTS79 system has

24 buses, 32 generating units and 38 branches.

The attackers can attack different cyber targets and the

MTTCs are estimated as shown in Fig. 15, and the related

MTTRs are assumed in Table I.

In power system reliability evaluation, two common sets

of indices are widely applied to model the power system

reliability: annualized indices where a single level of load is
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Fig. 16. Annualized LOLP indices for different scenarios

applied; annual index where the time-varying chronological

load curve is applied. In our study, these two cases are both

considered.

1) Annualized indices: The peak load value of the IEEE

RTS79 system is 2,850 MW and it is applied to this study.

On bus 22, a wind farm with 200 wind turbines is added and

the wind speed in station 9366 is applied. On bus 2, a wind

farm with 100 wind turbines is added and the wind speed in

station 1732 is applied. In this simulation, six scenarios are

studied, and the LOLP and EENS indices are shown in Fig.

16 and Fig. 17, respectively, and the allowed hidden time is

assumed as 100 hours. Four levels of attackers are considered,

and level 1, level 2, level 3 and level 4 attackers are novice,

beginner, intermediate, and expert, respectively. Their MTTCs

are calculated as shown in Fig. 15. The scenario “no wind

power” means wind power generations are not considered.

When wind power farms are considered and the cyber

attacks are ignored as shown in the case of “no attack”, the

LOLP value is 0.033 and the EENS value is 41,170 MWh/yr.

And this scenario is similar to the case studies in [20]-[22].

When the wind farms are attacked by the level 1 attackers,

the LOLP value is increased to 0.035 and the EENS value is

increased to 44,423 MWh/yr. This clearly demonstrates that

cyber attacks against the wind farms have a non-negligible

impact on the overall power system reliability.

When the skill level of the attacker increases, the MTTC

will decrease, which indicates the cyber attacks will become

more frequent. As shown in Fig. 16 and Fig. 17, the LOLP and

EENS indices both increase due to the increased frequency of

cyber attacks. This indicates that the skills and capabilities of

the attackers are important factors for influencing the power

system reliability.

2) Annual indices: The annual indices consider the chrono-

logical change of the load demands, and thus it can better

reflect the practical power system reliability while the calcu-

lation of the annual indices requires more computational time

than the annualized indices.

The simulation is conducted based on the IEEE RTS79

system and the system is modified to better demonstrate our

ideas. On bus 22, the original six 50 MW generating units are

Fig. 17. Annualized EENS indices for different scenarios.

removed and a wind farm with 200 wind turbines is added,

and the wind speed in station 9366 is adopted. On bus 2, the

original two 76 MW generators are removed and a wind farm

with 100 wind turbines is added, and the wind speed in station

1732 is adopted.

The simulation results are shown in Fig. 18 and Fig. 19. In

the case study of “no attack”, the LOLP value and the EENS

value are 0.0074 and 10,200 MWh/yr, respectively. Further,

the LOLP and EENS increase with the decrease of MTTC.

For example, when the wind farms are attacked by level 1

attackers, the LOLP value and EENS values are increased to

0.0082 and 11,133 MWh/yr respectively when the allowed

hidden time is 100 hours. And this proves the negative impact

of cyber attacks against wind farms on the reliability of the

power system.

In both Fig. 18 and Fig. 19, the LOLP and EENS values

increase when the levels of attackers are increased. It implies

that if the higher level attacker can compromise the targeted

cyber network within a shorter intrusion time, the power

system reliability will decrease due to the increased occurrence

of cyber attacks.

In order to demonstrate the influence of the allowed hidden

time, comparisons are made when the allowed hidden times are

1 hour and 100 hours, respectively. It is shown that the LOLP

and EENS indices have larger values when more allowed

hidden time is given. Since the allowed hidden time can reflect

the defense level of the system, the simulation result indicates

that the improvement of the cyber detection capability and

frequent updates of patches for the system are beneficial to

maintaining the power system reliability.

In summary, the annualized indices and annual indices

verify that cyber attacks against wind generation can affect

the power system reliability, and the power system reliability

increases with the increase of the MTTC and the decrease

of the allowed hidden time. These conclusions advocate the

necessity and urgency of taking effective actions to enhance

the cybersecurity of modern power grids.
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Fig. 18. Annual LOLP indices for different scenarios.

Fig. 19. Annual EENS indices for different scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, the cyber attack scenarios on the wind farm

SCADA/EMS system are discussed with the Bayesian attack

graph models. MTTCs of successful attacks against the wind

farm SCADA/EMS are evaluated based on various cyber attack

paths and skill levels of attackers. It is illustrated that a larger

MTTC is needed when more unknown vulnerabilities are

exploited. Also, a less attack time interval is needed for attack-

ers with higher skill levels. The reliability of the power system

considering various cyber attacks against the wind farms is

evaluated based on the IEEE RTS79 system. The reliability

indices including LOLP and EENS are derived accordingly.

It is found that the power system becomes less reliable when

more wind turbines are tripped and less MTTCs are consumed.

Also, advanced cyber intrusion detection techniques can help

to maintain the power system reliability. This study can be a

starting point for quantitative security analysis in wind inte-

grated power system reliability evaluation, and may provide

some useful insights for enabling informed decision-making

associated with cybersecurity budget allocation.

In the future research, more cyber attack scenarios in

the wind farm SCADA/EMS system will be examined and

analyzed. Countermeasures of the wind farm networks will be

considered with the Bayesian and MTTC models. Different

renewable energies affecting the power system reliability will

be investigated with the cyber attacks, and their impacts on

the overall system reliability will be evaluated.
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