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Abstract: Modern intelligent energy grids enable energy supply and consumption to be efficiently
managed while simultaneously avoiding a variety of security risks. System disturbances can be
caused by both naturally occurring and human-made events. Operators should be aware of the
different kinds and causes of disturbances in the energy systems to make informed decisions and
respond accordingly. This study addresses this problem by proposing an attack detection model
on the basis of deep learning for energy systems, which could be trained utilizing data and logs
gathered through phasor measurement units (PMUs). Property or specification making is used to
create features, and data are sent to various machine learning methods, of which random forest has
been selected as the basic classifier of AdaBoost. Open-source simulated energy system data are used
to test the model containing 37 energy system event case studies. In the end, the suggested model has
been compared with other layouts according to various assessment metrics. The simulation outcomes
showed that this model achieves a detection rate of 93.6% and an accuracy rate of 93.91%, which is
greater compared to the existing methods.
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1. Introduction
1.1. Necessity of the Research

Cyber-physical systems (CPS) attempt to couple the physical and cyber-worlds, and
they are extensively employed by industrial control systems (ICS) to provide users with all
the data they need in real-time [1]. Power distribution systems and waste-water treatment
plants are among the areas where CPS is being used. Nevertheless, CPS security problems
differ from conventional cyber-security problems in that they include integrity, confidential-
ity, and availability. In addition to transmitting, distributing, monitoring, and controlling
electricity, a smart grid (SG) would greatly enhance energy effectiveness and reliability.
Such systems may fail and result in temporary damage to infrastructures [2]. Power grids
are regarded as essential infrastructure nowadays by many societies, which have developed
security measures and policies related to them [3]. Phasor measurement units (PMUs) are
adopted in modern electrical systems to improve reliability as they become more complex
in their structure and design. Utilizing the gathered information for quick decision making
is one of the advantages. There is still the possibility that hacker exploits vulnerabilities to
result in branch overloaded tripping, which will lead to cascading failures and, therefore,
leads to considerable damage to SG systems [4]. As the operators monitor and manage
the energy grid, they must consider possible attacks on the grid. To accomplish this, much
energy and grid expertise is required. However, deep machine learning (DML) methods
are used because of their capability to recognize patterns and learn, as well as being quickly
able to identify potential security boundaries [5].
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1.2. Literature Review

Network systems, usually referred to as essential infrastructure systems, have been
usually applied to link the systems for monitoring and collecting equipment operations
in real-time. The supervisory control and data acquisition (SCADA) system is highly
vulnerable to cyber-attacks, and such attacks need to be handled with extreme caution [6].
Sensor’s fingerprints and noise processing are used in [7] for detecting hidden cyber-
attacks in CPS, and the data set from the actual-world water treatment plants is employed
to validate the approach, and the outcomes indicated an accuracy of 98%. In [8], a semantic
instruction detection system on the basis of the network was examined for detecting
attacks on water plant processes by analyzing network traffic. These findings highlight
the need for CPS investigation. Cyber and physical systems are part of the SG. Intrusion
detection problems are solved using DML, as seen in recent research [9–11]. The intrusion
detection method on the basis of DML is examined in [9]. The data set employed was
a SWAT-produced datum from various attacks of 10 various kinds. A quick one-class
classification scheme that overcomes the problem of vast sensitivity to out-of-range data is
employed in [10], and an actual data set is used to test the suggested algorithm. The data
sets employed in this study have also been utilized in numerous other types of research.
The authors in [11] examined the method with accuracy rates of around 90% for JRipper
+ Adaboost and 75% for random forest compared to the whole multiclass data set. The
privacy preservation intrusion diagnosing method on the basis of the correlation coefficient
and expectation maximization (EM) clustering techniques is presented in [12] to select
significant sections of data and recognize intrusive occurrences. There was an 88.9% recall
rate in the model compared to the multiclass data sets with 75% of features. Authors in [13]
have improved the detection process by dropping the defense target from rejecting attacks
to preventing outages to decreasing the necessary number of secured PMUs. In [14], the
authors investigated the effect of cyber-attack on the PMU state estimation process using
the Cartesian equations and in the case of zero injection buses. In [15], it is tried to develop
an allocation method for fault observability using PMU data considering zero injection
buses. In [16], the authors have introduced a fault detecting and classifying, and placement
approach based on advanced machine learning in radial distribution systems.

1.3. Contributions

A model based on machine learning is presented in this study for detecting system
behaviors by analyzing historical data and related log data. Although unsupervised
learning is beneficial for detecting zero-day attacks since it requires no training in attack
scenarios, it is also vulnerable to false positives [17]. Furthermore, supervised learning
can clearly improve the detection’s confidence. The experiments are then performed using
the supervised machine learning approach. The main contributions in this paper are
summarized as follows:

(1) Feature construction engineering is performed, and 16 novel features are constructed
via an analysis of the features and possible links of the raw data in the electrical
network. It is possible to construct novel features using a combination of attributes
that could help more effectively utilize possible types of data instances, which could
be used in machine learning models for better application.

(2) A new process for handling abnormal data, such as not the number and infinity
amounts in the data sets, is proposed. The suggested approach could significantly en-
hance accuracy in comparison to conventional processes of processing abnormal data.

(3) A classification model based on machine learning is constructed. The average ac-
curacy of 0.9389, precision of 0.938, recall of 0.936, and F1 score of 0.935 on 15 data
sets demonstrate that the suggested model successfully distinguished 37 kinds of
behaviors such as power grid fault and single-line-to-ground (SLG) fault replay, relay
setting varies, and trip command injection attacks.
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Following are the remaining sections of the study. A detailed explanation of the
methodology is provided in Section 2. The results of the classification are discussed in
Section 3. The conclusion appears in Section 4.

2. Model Structure

Scenarios where disturbances and attacks happen in the electric grid, as well as the
meaning of features in the data set, are presented in this part. The suggested model and
data processing are detailed here.

2.1. Introduction to Power System Framework Configuration

The suggested data set consisting of measurements associated with normal, fault, and
cyber-attack behavior, and so on [18–20]. The electrical network block diagram is shown
in Figure 1 [21]. Relay, control panel, snort, and PMU/synchronous are primarily used
for recording measurement data. Following are some of the most significant components.
Power generators are shown by P1 and P2, and the intelligent electronic device (IED) is relay
R1, which could switch breaker1 (BR1) on or off. Transmission lines (TLs) are represented
by L1 and L2. The phasor data concentrator is shown by PDC that stores and displays
Synchron-phasor data as well as records historical data. The IED incorporates a distance
protection mechanism that can trip the breaker if it detects faults. Due to the absence of
internal verification approaches for detecting changes, the breaker will be tripped regardless
of whether the fault is valid or not. BR1-4 can be tripped by manually sending relevant
commands to IEDs. In the event that lines or other components are to be maintained, the
manual override will be necessary.
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Figure 1. The power system framework configuration.

This experiment applied a data set that contains 128 features recorded using PMUs 1
to 4 and relay snort alarms and logs (Relay and PMU have been combined). A synchronous
phasor, or PMU, measures electric waves on a power network using a common time
source. A total of 29 features could be measured by every PMU. The data set also contains
12 columns of log data from the control panel and one column of an actual tag. There
are three main categories of scenarios in the multiclass classification data set: No Events,
Events, Intrusion, and Natural Events. Table 1 summarizes the scenarios, and a brief
explanation of each category is provided in the data set.

(a) SLG fault: A fault occurs whenever the current, voltage frequency of the system
changes abnormally, and many faults in electrical systems occur in line-to-ground and
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line-to-line (LL). The simulated SLG faults are represented as short circuits at diverse
points along the TL in the data set.

(b) Line maintenance: This type of attack is caused when one or more relays have been
deactivated on a particular line to maintain.

(c) Data injection: More research is being conducted into false data injection state esti-
mation in electrical networks. False data injection attacks are one of the main forms
of network attacks, which could affect the power system estimation method. Attack-
ers alter phase angles in order to create false sensor signals. The objective of such
attacks is to blind the operators and to avoid raising an alarm, which could lead to
economic or physical damage to the electrical systems. Attackers synchronize the
phasor measurement with the fault’s SLG and next send a relay trip command on
the affected lines. A data set modeled the conditions by varying variables, such as
current, voltage, and sequence components, which caused faults on various levels
([10 to 19]%, [20 to 79]%, [80 to 90]%) of the TLs.

(d) Remote tripping command injection attack: This occurs when a computer on the
communications network uses unexpected relay trip commands to relay at the end of
a TL. For achieving attacks, command injection has been applied versus single relays
(R [1–4]) or double relays (R3 and R4, R1 and R2).

(e) Relay adjusting variation attack: The relay is configured with a distance protection
layout. Attackers change the setting, so the relay responds badly to authentic faults.
In the data sets, faults were caused via deactivating the relay functions at diverse
parts of TLs with R1 or R2 or R3 or R4 deactivated and fault.

Table 1. Explanation of scenarios.

Case Study No. 41 1–6 13, 14 7–12 15–20 21–30, 35–40

Explanation Usual operation
load variations SLG faults Line

maintenance Data injection
Remote tripping

command
injection

Relay setting
vary

Kind No events Natural events Intrusion events

2.2. Methodology

Despite the fact that the machine learning approach is capable of detecting distur-
bances and cyber-attacks on electric grids, it can have these drawbacks. Currently, refer-
ences just discuss how to diagnose attacks in the electrical grids and seldom examine the
data relationship. In contrast, when working with multi-classification problems, many
algorithms convert them into multi-two-class situations. Nonetheless, the AdaBoost algo-
rithm is able to handle multi-classification situations directly. It utilizes weak classifiers
well for cascading and is capable of using various classification algorithms as weak clas-
sifiers. In terms of the error rate of misclassification, the AdaBoost algorithm is highly
competitive [22]. With an increase in data amount, the fitting ability is affected both by
generalization problems and by the increasing difficulty of computing. Machine learning
requires a large amount of calculating to find the best solution. Additionally, the accuracy
rates on the model presented in [11,12] are about 90% compared to the multiclass data sets,
which provides considerable space for development. As a consequence of these findings,
this paper constructs a model that can perform superior feature engineering and next can
split the data by the diverse PMUs to minimize computation overhead. It should be noted
that the PMU allocation in the smart grid is performed in the planning stage and might be
implemented according to different purposes. While the high cost might be a limitation,
the high number of PMUs is always preferred to cover all areas of the smart grid. It is
worth noting that PMU allocation is out of the scope of this work but can be found in other
research works widely. In addition, the AdaBoost algorithm for detecting the 37-class fault
and cyber-attack case studies in the electric grids is adopted in this paper.
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About the feature selection process, it should be noted that this experiment applied a
data set that contains 128 features recorded using PMUs 1 to 4 and relay snort alarms and
logs (relay and PMU have been combined). Please also note that each PMU can record 29 dif-
ferent features. In this regard, and in order to obtain enriched and integrated informative
data, feature construction engineering is performed, and 16 novel features are constructed
via an analysis of the features and possible links of the raw data in the electrical network.
Technically, it is possible to construct novel features using a combination of attributes that
could help more effectively utilize possible types of data instances, which could be used
in machine learning models for better application. It is worth noting that we made use of
the random forest method to create and classify features. Finally, based on anticipation
weighted voting, 37 various case studies were implemented for simulation purposes.

2.3. Diagnosing Attack Behavior Model Structure

A model architecture diagram is shown in Figure 2 to detect faults and cyber-attack
in electrical grids. According to Figure 2, the model architecture usually consists of four
stages: property making, data dividing, weight voting, and layout training as follows:
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Stage.1. Property making. By creating novel features manually from the original data
set, it is able to improve the dimension of the data. A novel piece of data is generated by
integrating the novel features with several original ones. The upper limit of the model is
determined by the features and data, and the algorithm can just approximate the upper
limit as closely as feasible. In order to achieve maximum accuracy and improve robustness,
feature construction engineering is essential. It is important for feature construction using
the original data to obtain more flexible features, and therefore increase data sensitivity
and increase the ability to analyze it in the case of sending it to models for classification
and training. The target of helpful features is to be simple to understand and maintain.
The results of the analysis have led to the construction of 16 novel features. There is also a
tendency in machine learning problems to include a large number of features for training
instances, and it results in excessive computational overhead and overfitting, leading
to poor efficiency. The curse of dimensionality has usually been used to describe this
problem. Feature selection and feature extraction have been widely applied to mitigating
the problems caused by high dimensionality in learning problems [23].

Stage.2. Datum dividing and training. The test and training sets are divided through
9:1 through the data splitting module. There is too much noise in the classifier if too many
features are used [24]; therefore, every original data has been split into four parts according
to features from various PMUs. While doing this, a section of the main characteristics is
picked and sent to the AdaBoost layout to train alongside the novel features as well. This
step is necessary for reducing the effect of errors resulting from bad PMU measurements.
In case the feature dimension increases, the classifier’s performance decreases. As a result
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of this step, several of the original features are combined with novel ones in order to reduce
the dimension. The original features are sorted using feature importance, and afterward, a
variety of proportions of the features are selected, explained in more detail in Part 3. In
addition, several classifier models are developed for personalizing the features following
splitting. Various classifiers are set up to make every section of the data display the greatest
impact on the classifier, i.e., the training model. Using five classifiers and later obtaining
five tags following transferring the information to the layout reduces the effect of the alone
classifier generalization error.

Stage.3. Weights for voting. It is the responsibility of the module to assign diverse
weights to the tags derived from diverse classifiers and vote on the last classification tag
of the data. According to the accuracy ratio of every classifier in the training set, the ratio
of various weights has been thus determined. Various tags are generated by the test set
following they have passed through the trained classifier, and the weights are determined
for the last voting session based on the tags of the relevant classifier. By updating the
weights in real-time, the entire system can become more robust and generalizable.

2.4. In-Depth Explanation of the Attack-Diagnosing Layout
2.4.1. Properties Making

During property making, 16 novel features have been extracted from every PMU
measurement feature and incorporated into the original data set for preparing for the next
step. Raw data is mainly used for extracting novel features based on corresponding compu-
tations. Table 2 shows the name, explanation, and extraction process of the extracted feature.

Table 2. Explanation of extracted characteristics.

Feature VCA4 VCA1 SI

Description PA7:VH-PA 10:IH Sin (PA1:VH-P4:PA4:IH-
PA7:VH-PA10:IH) Sin (PA4:IH-PA 10:IH)

Feature SV VCM1 VCM2

Description Sin (PA1:VH-PA 7:VH) (PM1:V-PM7:V)/
(PM4:1-PM10:I)

(PM2:V-PM8:V)/
(PM5:I-PM11:I)

2.4.2. Data Processing

It is important to process the data prior to sending it to the machine learning model.
The normalization of the data is an important part of data processing. The benefit of this
method is that it speeds up and improves the accuracy of iterations for finding the best
solution for gradient descent. Among the most common techniques of data normalization
are z-score standardization and min-max standardization. Basically, min-max standard-
ization works by changing the original data linearly toward an outcome between [0, 1]
shown below:

Xscale =
x− xmin

xmax − xmin
(1)

In addition, Z-score standardization has been known as standard deviation standard-
ization, and it has been mostly applied for characterizing deviations from the average.
The data analyzed through this technique assure the standard usual distribution, which
is that the standard deviation and average are equal to one and zero, respectively. The
data processed using the process can satisfy the standard normal distribution, meaning the
mean equals 0 and the standard deviation Equation (1). Following is the transformation
function, the mean amount of the instant data is shown by µ, and the standard deviation is
represented by σ. This study adopts this normalization process.

Xscale =
x− µ

σ
(2)
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A data set may contain the not a number (NAN) and infinity (INF) amount, but it has
been usually substituted through the mean amount or zero. For the data set applied here,
the novel replacement process is proposed to avoid underflows in the final replacement
value and the data being overly discrete. log_mean value is used for replacing NAN and
INF values present in the data. It can be calculated as follows:

log_mean =
∑ log|ki|
Num(ki)

·
(

1− 2l
(

∑ ki
Num(ki)

< 0
))

(3)

Here, the number of digits in a column is shown by Num(ki) and the indicator function
is represented by l(x), which can be described in the following way:

l(x) =
{

1 i f x is true
0 otherwise

(4)

Comparative experiments are conducted on various treatment approaches in this
study. Section 3 shows the outcomes that show that the suggested process succeeds.

2.4.3. Establish Classifier Layouts

During the process of making the classifier scheme, the features and characteristics of
the SG information are considered, and various DML classification schemes are established
for the data obtained from every PMU. Various experiments have shown that random forest
is the best for the data gathered through every PMU, and AdaBoost is the ideal layout for
combined features, including a section of the main characteristics as well as properties
derived from the property making. With AdaBoost, several basic classifiers are combined
into a robust classifier. The experiment proposes a new model in which random forest
has been applied as the basic classifier of AdaBoost, followed by weighted voting on the
anticipation outcomes (AWV).

Stage. (1) Set the training data’s weights of observation = (ω1, . . . ω2, . . . ωn) ωi = 1/n.
Stage. (2) For t = 1:T

(I) Select random forest classifier RFC(t) as the base classifier of Adaboost.
(II) Calculate classification error ε(t) = ∑n

i=1 ω
(t)
i l(yi 6= RFC(t)(Xi)/ ∑n

i=1 ωi
(t)

Here, Xi shows the ith input feature vector, the actual tag of the ith input property
vector is represented by yi. The predicted outcome is shown through RFC(t)(Xi).

(III) Calculate α(t) = 0.5 ln
(

1−ε(t)

ε(t)

)
.

(IV) Update the weights through ω
(t+1)
i = ω

(t)
i exp

(
α(t)l

(
yi 6= RFC(t)(Xi)

))
(V) Renormalize so that ∑n

i=1 ωi = 1.

Stage. (3) Output C(x) = argmaxy ∑T
t=1 α(t)l(RFC(t)(X) = y

Here, argmaxx( f (x)) function is meaned return the amount of x which maximizes f (x).
Here, for 37-class classification problem, so ∈ (1, 2, . . . , 37), and ∑T

t=1 α(t)l(RFC(t)(X) = y
is a 37-dimensional vector. When various probabilities are associated with various tags
for one feature vector Xi, the last output is determined through the probability with the
highest amount.

2.4.4. Voting with Weights

Hard combination and soft combination are two ways of addressing the final multiple
tags [25]. The hard combination is training the similar data set section with various DML
methods and assigning the similar weight to the achieved last tags for voting. The result
is the tag with the highest weight value. Similar to that, the soft combination involves
adopting various DML methods for a similar section of the data set. However, the tags are
assigned with different weights, and the end result is the tag with the highest weight. To
summarize, the main difference between the hard and soft combinations is whether or not
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the weights are equal. In a classifier, weights represent the probability value of a tag or its
confidence level. The present study sets up various machine learning models for various
data blocks to address multi-tag problems so as to make the model perform effectively for
the data set. Lastly, different weights are assigned to tags to determine the final results.
Algorithm 1 describes these steps.

Algorithm 1: Weight Voting Scheme

Input: 144 characteristics
Output: Tag
(1) Divide data by random Num (training set):Num (test set) = 9:1
(2) Divide 144 characteristics into 4 section PMUi_charectristics (i = 1, 2, 3, 4)

(3)
Transfer training set to the various machine learning; layout and take the precision rate
acc (cl fi) (i = 1, 2, 3, 4, 5)

(4) Transfer trail information to the trained layout and produce five tags; labeli (i = 1, 2, 3, 4, 5)

(5)
Initialize weight ωi (i = 1, 2, 3, 4, 5) and ω1 : . . . : ω5 ≈ acc (AdaBoost) : acc(RFC1) : . . . :
acc(RFC4)

(6) Merge tags with weights [[abel1, w1], . . . , [abel5, w5]]
(7) Constitute a tag set (tag), and compute the weight set W regarding the tag in the set
(8) Chose the tag with the largest weight in the W as the last outcome

3. Experiment and Evaluation

In machine learning, classifications and regressions are the primary learning tasks. It
is obvious that the classification problem is addressed in this study. The next experiments
are designed to test whether the model structure described in this study is capable of
distinguishing fault and disturbance in electrical systems. A comparison is made between
the model and various conventional models, such as convolution neural network (CNN),
gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), decision tree
(DT), support vector machine (SVM), and k-nearest neighbor (KNN).

Additionally, the accuracy achieved through transferring information has been com-
pared after the property making is compared.

3.1. Data Set

A multiclass classification data set for ICS cyber-attacks is used in the present study.
There are a total of 15 groups in the multiclass data set, each with about 5000 pieces of data.
Each group’s situation is shown in Table 3. Across all tag kinds, the distribution of data
can be fairly uniform. ARFF (Attribute-Relation File Format) is the main file template of
the data set. An ARFF file is the ASCII text format, which represents a set of attributes
shared by several samples. To ease the process, ARFF files are converted to CSV (Comma
Separated Values) template. In CSV files, textual/numeric tabular information is stored
in plain text. AUC, F1 score, ROC curve, ROC curve, precision, accuracy, and recall area
are primarily used to evaluate classification models in machine learning. There are several
terms applied in machine learning that require an explanation. The true positive (TP) is the
positive sample that the layout predicts to be positive, the false positive (FP) is the negative
sample that the layout predicts to be positive, and the false negative (FN) is the positive
sample that the model predicts to be negative, the true negative (TN) is the negative sample
that the model predicts to be negative. The suggested layout is evaluated using accuracy,
precision, recall, and F1 score. An F1 score is basically the harmonic value of precision and
recall, which are calculated according to the following equations:

accuracy = (TP + TN)/(TP + FP + FN + TN) (5)

precision = TP/(TP + FP) (6)

recall = TP/(TP + FN) (7)
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F1 score =
2TP

2TP + FN + FP
=

2·precision·recall
precision + recall

(8)

Table 3. Multiclass instance data statistics.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

Data number 4966 5069 5415 5202 5161 4967 5236 5315

Data set Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Entire

Data number 5340 5569 5251 5224 5271 5115 5276 78,377

3.2. Experiment Outcome
3.2.1. Machine Learning Model

In this experiment, KNN, SVM, GBDT, XGBoost, CNN, and others were applied as
conventional models.

(A) Based on the distance among feature values, the K-nearest neighbor algorithm has
been categorized. Distance is calculated primarily using Euclidean/Manhattan distances
formulation.

(B) The SVM [26] layout uses the sample as a spot in the region and applies various
mapping functions for mapping the input into the great-dimensional property region for
constructing the hyperplane group or hyperplane. According to intuition, the further away
the boundary is from the point of data training, the more accurate the classification will be.
ωTx + b = 0 shows the formulation to divide the hyperplane, in which the normal vector is
shown by ω determining the hyperplane’s direction., and the displacement term is shown
by b determining the distance between the hyperplane and the origin. γ=

(
ωTx + b

)
/||ω||

show the formulation for the interval from each spot x to the hyperplane in the region,
γ must be maximized within the conditions, which the hyperplane properly divides the
training instances, i.e.:

max
ω,b

2
||ω||

subject to yi
(
ωTx + b

)
≥ 1

(9)

Calculating the limitation problem via the Lagrange function is more efficient, and
an objective function can be derived from the following formula, in which αi shows the
Lagrange multiplier and αi ≥ 0.

L(ω, b, α) =
1
2
||ω||2 +

m

∑
i=1

αi

(
1− yi

(
ωTx + b

))
(10)

Determine L(ω, b, α)′s partial derivatives and make them 0:

∂L(ω, b, α)

∂ω
= 0,

∂L(ω, b, α)

∂b
= 0 (11)

The dual problem can be as follows:

max
α

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjxT
i xi subject to

m

∑
i=1

αiyi = 0, αi ≥ 0 (12)

(C) The decision tree algorithm starts with a group of instances/cases and then makes a
tree information framework, which is applied to novel cases. A group of amounts/symbolic
amounts describes every case [27]. Entropy is used in C4.5 and C5.0 for the spanning
tree algorithm.

(D) A boosting algorithm has been used to improve the XGBoost [28] classifier algo-
rithm. The model is based on residual lifting. Based on the error function, the objective
function is calculated by taking the prime and second derivatives of every data spot. The
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loss function is a square loss. Here is its objective function, in which l shows a differential
convertible loss function, which shows variation among the prediction ŷi and the purpose
yi. The second part Ω can penalize the pattern complexity, and T shows the leaves number
in the tree. The γ and λ show the tree’s complexity, the greater their amount, and the
simpler the framework of the tree.

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) where Ω( f ) = γT +
1
2

λ||ω||2 (13)

(E) The random forest exhibits excellent efficiency and has been extensively ap-
plied [29]. RF utilizes the decision tree as its base classifier and shows an extension of
Bagging. RF uses two very significant procedures. The first technique involves introducing
random features in the procedure of decision tree making, and the second involves an
out-of-bag estimation. The RF method can be described below. The first step is to randomly
select a sample from every data, and afterward, to return the sample to the original data.
As a root sample for a decision tree, the chosen samples have been applied for training
the decision tree. Second, for splitting the nodes of the decision tree, m attributes have
been chosen randomly (there are a total of M attributes and ensuring << M). Choose an
attribute to be the dividing feature of the node using the strategy, such as information gain.
Continue to do this until the decision tree can no longer be divided.

(F) Among the more popular deep learning networks is CNN. There are usually input,
output, latent, and max-pooling layers in a CNN model. Several great results have been
obtained in numerous areas of computer vision. Here, one-dimension property vectors are
used as input, and a one-dimension convolution kernel in convolution layers is adopted.
The convolution layer extracts properties from the input, and here the kernel size is three.
The process of the CNN model is shown in Figure 3.
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Figure 3. The procedure of CNN layout.

Actually, the main purpose of this research is to show the high and successful role of
the deep learning models in reinforcing the smart grid against various cyber-attacks. In
this regard, the proposed model would detect and stop cyber-hacking at the installation
location rather than focusing on the cyber-attack type. Therefore, the localization procedure
would be attained through the diverse detection models located in the smart grid, but the
cyber-attack type detection requires more data that can be made later based on the recorded
abnormal data.

3.2.2. Outcomes

This study considers 37 varied scenarios for events. In order to determine the need for
various models (fault analysis), we performed some comparative experiments according
to various PMU kinds. In one group, properties of localization/segmentation are sent to
the related DML model in order to train, and in the other one, whole features are sent
to various machine learning models. Moreover, it is shown in Table 4 that data can be
effectively split according to the PMU resources. Splitting the data can enhance the accuracy
of classification models as well as reduce data dimensions and enhance training speed and
minimize computing sources. The score of the significant features is shown in Figure 4.
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Table 4. Transfer diverse characteristics to the layout for comparison.

Technique
Characteristics

Entire Split

Accuracy 0.9344 0.9387
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Figure 4. Significance features score.

Several corresponding experiments are conducted on various ways of replacing abnor-
mal values in data. Table 5 shows the outcomes. The replacement method is shown in the
left column, and the suggested approach is represented by log_mean. Zero shows a process
to replace NAN and INF with zero values, and mean shows a process to replace with the
mean value. The AWV model is utilized as a trial model, and the accuracy is adopted as
the assessment metrics, that is, the right column in Table 5.

Table 5. Diverse methods to procedure Inf and Nan.

Method Zero Mean Log-Mean

Accuracy 0.9361 0.9342 0.9387

Applying the log_mean technique for replacing the unusual amount in the data is
intuitively the best approach. According to the outcome, the suggested process in order to
process abnormal values has proven successful.

Comparison experiments are also conducted to verify feature selection. First, the
significance of the original features is determined, and afterward, they are arranged based
on significance. A variety of mixtures of features has been selected for training, and Table 6
shows these outcomes.

The approach was verified practically through a comparative test. The test extracts
the test group and training group from 15 multiclass data sets in a 9:1 ratio at random,
and afterward, these data sets have been combined into 1 training group. The training
group has been transferred to the layout to train and learn. Table 7 presents the outcomes
of 15 test sets transferred to the model for practically simulating the efficiency of the model
applications. It is apparent that the model’s accuracy has decreased. It is because data
interaction would occur by increasing the number of data resulting in changing the model,
and whenever whole data has been combined, there would unavoidably be abnormal
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points and noises. Due to the fact that such noises and anomalies have not been separated
in training, the model’s indexes alter, and the robustness decreases.

Table 6. Assessment of characteristics chosen.

Characteristics Only New
Characteristics

12.5% Main
Characteristics

and New
Characteristics

25% Main
Characteristics

and New
Characteristics

37.5% Main
Characteristics

and New
Characteristics

50% Main
Characteristics

and New
Characteristics

Mean accuracy 0.7492 0.9390 0.9350 0.9337 0.9334

Characteristics

62.5% Main
Characteristics

and New
Characteristics

75% Main
Characteristics

and New
Characteristics

87.5% Main
Characteristics

and New
Characteristics

100% Main Characteristics and New
Characteristics

Mean accuracy 0.9335 0.9331 0.9324 0.9353

Table 7. Layout accuracy on 15 trail sets in the actual simulation.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

Data number 0.8894 0.8699 0.9097 0.8830 0.9092 0.9096 0.9066 0.9193

Data set Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Entire

Data number 0.9083 0.9229 0.9241 0.9007 0.9016 0.8966 0.9130 0.9043

Firstly, the efficacy of the features created from the feature construction engineering
in the model is determined by sorting the significance of features. Model interpretability
can be determined by determining the significance of features. Weight, gain, cover, and so
on are general indicators of feature significance. In the XGBoost method [30], the number
of times a property appears in a tree has been shown by weight, the mean gain of the slot
using the property has been represented by the gain, and the mean coverage of the slot
using the property is shown by the cover. According to Figure 4, weight calculates feature
significance. The abscissa indicates the names of the beat 45 properties, and the ordinate
indicates the assessment score. The origin features are shown by the gray part. The features
derived from feature construction engineering are represented by the red mark. It is evident
that each of the 16-making properties is in the best 45.

The test trains 15 sets of multiclass classification data sets and tests respectively and
uses accuracy as an assessment metric. The accuracy of the trail data sent to the layout
before and after optimization based on the main 128 properties is shown in Figure 5. The
classification accuracy of the trail group on various layouts with default variables is shown
in Figure 5a, and the accuracy of the trail group on the layout applying optimized variables
is represented in Figure 5b. For a more intuitive visualization of the variation in accuracy
after layouts are optimized, Figure 5a and b are combined, and the mean of the accuracy
values for whole sets are adopted, i.e., Figure 5c. Figure 5 shows that the SVM layout
with default variables has an accuracy of approximately 0.30, but after optimization, it
grows to 0.85, which represents a near 200% advancement. Other models have improved
significantly in accuracy after optimization as well. The best accuracy of the suggested
AWV model is 0.9217.

Table 3 shows that every data set has about 5000 segments of data; therefore, the CNN
layout cannot be used. The semantic relationships among features might also be ignored by
several neural networks, such as CNN and long-short-term memory (LSTM) layouts. Thus,
in several cases, statistical features according to the manual design could positively affect
model accuracy as well. Moreover, the tree-based algorithm outperforms KNN and SVM.

The test set had better performance on the model suggested in this study in comparison
to the conventional DML and CNN, as shown in Figure 5.
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4. Conclusions

Various SG information as the experimental foundation is used in the present study,
and property making for the original data is applied. The layout for identifying faults and
cyber-attack in the electrical system is proposed. The present study uses various DML
assessment indexes for evaluating the suggested model and conventional DML methods in
the experiment. According to the outcomes, the information analyzing process improves
the model’s accuracy, and the AWV layout detects 37 types of behavior in electrical systems
efficiently. As a result, machine learning can be used in the power grid to assist operators in
making decisions. In other words, the smart grid operator can always check the health level
of the data gathering by the PMUs all around the grid. In the case that any abnormality is
detected, the possibility of an intentional cyber-attack exists, and thus, some cautious pre-
operation strategies shall be considered to keep the power and demand balance. Moreover,
if the data readings from any PMU are unusual, the system operator can decide to estimate
the system status without this PMU and rely more on the data coming from the other
healthy PMUs.
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