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Abstract—Visualization and situational awareness are of vital
importance for power systems, as the earlier a power-system event
such as a transmission line fault or cyber-attack is identified, the
quicker operators can react to avoid unnecessary loss. Accurate
time-synchronized data, such as system measurements and device
status, provide benefits for system state monitoring. However, the
time-domain analysis of such heterogeneous data to extract pat-
terns is difficult due to the existence of transient phenomena in the
analyzed measurement waveforms. This paper proposes a sequen-
tial pattern mining approach to accurately extract patterns of
power-system disturbances and cyber-attacks from heterogeneous
time-synchronized data, including synchrophasor measurements,
relay logs, and network event monitor logs. The term common
path is introduced. A common path is a sequence of critical system
states in temporal order that represent individual types of distur-
bances and cyber-attacks. Common paths are unique signatures
for each observed event type. They can be compared to observed
system states for classification. In this paper, the process of auto-
matically discovering common paths from labeled data logs is
introduced. An included case study uses the common path-mining
algorithm to learn common paths from a fusion of heterogeneous
synchrophasor data and system logs for three types of distur-
bances (in terms of faults) and three types of cyber-attacks, which
are similar to or mimic faults. The case study demonstrates the
algorithm’s effectiveness at identifying unique paths for each type
of event and the accompanying classifier’s ability to accurately
discern each type of event.

Index Terms—Common paths, cyber-attack detection, distur-
bances, symmetric and unsymmetrical faults, synchrophasor data
and device log mining.

I. INTRODUCTION

S ITUATIONAL awareness technologies have been stud-
ied and continuously improved for decades. The need to

continue situational awareness improvements is motivated by
recent power disturbances, which have led to large-scale black-
outs [1]. A power-system disturbance, such as a transmission
line fault, can initiate a chain of reactions, which lead to a cas-
cading blackout if timely actions from operators are not taken.
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Poor visibility across the power system may also cause the sig-
nificance of an event to be misunderstood and lead to incorrect
control actions by operators in control centers. Additionally, as
power systems increasingly depend on communication infras-
tructures to provide the wide-area monitoring and control,
power systems are exposed to the threat of cyber-attacks.
Cyber-attacks are another form of power-system contingency.
Attacks that target power systems can exploit vulnerabilities in
control devices and communication links to corrupt the con-
trol and measurement signals [2], [3], and interrupt monitoring
algorithms [4]. Cyber-attacks that corrupt control and measure-
ment signals can be disguised as power-system disturbances or
control actions. Situational awareness technologies are needed,
which distinguish between actual power-system disturbances
related to natural events and cyber-attacks. The emphasis of
this work is not on classifying disturbance types as quite a
number of methods have been proposed to do so in the power
system, but on distinguishing between disturbances and cyber-
attacks. First, in the case that a cyber-attack impersonates a
disturbance or control action, proper classification will lead to
proper response. Classifying a cyber-attack as a disturbance or
control action can lead to improper response and cause an out-
age or other negative impacts on the power system. Conversely,
incorrectly classifying a disturbance or control action as a
cyber-attack can lead to improper response within the informa-
tion and communications technology (ICT) system. Second, a
single classifier, which identifies all types of power-system con-
tingences, is needed as an input to automated event response
algorithms such as autonomic management frameworks, sys-
tem integrity protection schemes (SIPS) [5], wide-area protec-
tion systems (WAPS) [6], and autonomic control frameworks
[7]. This paper presents a methodology to mine the patterns
for disturbances and cyber-attacks using a two-dimensional
(2-D) graph from logged heterogeneous system data, to use the
common paths in the graph as signatures of each type of mod-
eled scenario, and finally, to classify specific disturbances and
cyber-attacks. For proof of concept, in the paper, we consider
disturbances as different types of line-to-ground and line-to-line
faults.

Wide-area measurement systems (WAMS) couple time-
synchronized voltage, current, and frequency measurements
with high-speed networks to allow improved power-system
situational awareness [8]. Compared with the traditional super-
visory control and data acquisition (SCADA) systems that poll
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field sensors once per several seconds, synchrophasor systems
allow measurement of up to 120 samples/s. Synchrophasor data
were used in this work for two reasons. First, the common
path-mining algorithm uses a set of observed system states
in temporal order as a signature for each observed event
type. Synchrophasor measurements enable identification of
fast-moving power-system events. Some power-system events
involve fast-changing behaviors and may last only a few mil-
liseconds [9]. For example, zone 1 faults are typically set to
be cleared instantly. The presence of a fault and the system
response of opening the breaker to clear the fault take just
a few cycles. These events can be missed by slower speed
measurement systems. Second, synchrophasor systems pro-
vide more accurate system-state visibility due to the use of
time-synchronized measurements. The common path-mining
algorithm can leverage this improved visibility to track events
related to a single event from multiple sensors. The relatively
high measurement frequency and time-synchronized charac-
teristic offered by WAMS create very large volumes of data
and enable various applications including wide-area protection
schemes (WAPS), and SIPS [5], [6], [10]. The common path-
mining algorithm is not dependent on synchrophasor systems.
Common path mining requires the ability to observe sequences
of events. Other devices such as fault data recorders or meters
may potentially be substituted to detect events of interest. Using
synchrophasor data alone is not enough to detect cyber-attacks.
For example, a cyber-attack can mimic a real fault by first
injecting false measurements, then tripping the relay. Such
mimicry cannot be detected with synchrophasor data alone. The
status of other power-system components such as relays and
breakers is also available as time-synchronized data via syn-
chrophasor systems [10]. Combining synchrophasor data with
other system logs such as relay status log and network event
monitor logs can extend the situational awareness capabilities
provided by a synchrophasor system to detect cyber-attacks.
However, this creates the challenge of how heterogeneous data
sources can be merged to train and use such a classifier. This
paper provides a solution to this problem by proposing a
data-mining approach that leverages the timestamped data to
extract temporal patterns, which can be used to describe system
behavior related to disturbances and cyber-attacks. Henceforth,
disturbances and cyber-attacks are collectively referred to as
scenarios.

In this work, a pattern for a scenario is presented as a
common path that consists of a sequence of system states in
temporal order. A system state in a common path is made up
of multiple instantaneous readings from available sensors from
the system. One advantage of the common path is that it over-
comes the difficulty in analyzing time-domain waveforms by
discovering the critical system states across very short time
intervals (in milliseconds). The automatic process of discov-
ering common paths is introduced by using a case study in
a simulated three-bus two-line transmission system. For this
work, a case study is provided, which considers disturbances
including symmetric and asymmetric faults and different cyber-
attacks that mimic the single-line-to-ground (1LG) fault to con-
fuse operators in the control center. The cyber-attacks studied

in this work belong to masquerading and/or man-in-the-middle
(MITM) attacks that target physical devices such as phasor
measurement units (PMU) and relays. These attacks may orig-
inate from a compromised node in control center, sending
control commands or measurement packets covered by legiti-
mate source IP addresses and legal packet formats. As such, it
is assumed that the masquerading packets cannot be detected
by traditional network intrusion detection systems. Validation
of the common path-mining algorithm is based on simulated
data because actual synchrophasor data are not available for
researchers due to the proprietary nature of data, confiden-
tiality issues, and lack of proper sharing mechanism among
researchers and institutes. Additionally, datasets captured from
utilities contain a limited number of scenarios. This limits
diversity in the dataset. Some power-system scenarios are rare,
especially cyber-attacks. Hardware-in-the-loop (HIL) simula-
tion allows targeted dataset creation with realistic scenarios
captured from the same commercial devices found in utilities.
The same datasets used in this work have also been used in [11]
for synchrophasor data-mining research.

This work has three primary contributions that distinguish
it from existing methods. First, this work demonstrates a new
classifier capable of distinguishing power-system disturbances
and cyber security attacks that interrupt power-system control
actions and mimic real disturbances. Compared to a similar
work in [11], the method described in this paper provides pre-
cise classifications of fault types and the types of cyber-attacks
with similar accuracy. Second, this work uses the common
path-mining algorithm to mine fused heterogeneous data and
create common paths for each known event type. The common
path-mining algorithm uses less memory when compared to tra-
ditional data mining methods that require data to be mapped
into memory before mining. The smaller memory requirement
is achieved via a preprocessing step, which compresses the mas-
sive time-synchronized data into a sequence of system states,
aka paths, which require considerably less memory than storing
all time-synchoronized measurements associated with an event.
Third, power systems are dynamic in nature, which leads to
minor variations in system state for known scenarios. The clas-
sifier presented in this paper learns by parsing datasets marked
with scenario type. The training process results in an ordered
sequence of system states, i.e., a path, representing each unique
instance of a scenario found in the dataset. To avoid overfitting,
the common path-mining algorithm was developed to discover
critical states shared by similar paths representing the same sce-
nario. The result of the common path algorithm is a merged set
of paths representing all scenarios in the dataset. The classifier
matches monitored state-transition patterns to common paths
of known scenarios to provide a specific classification of the
observed behavior.

The remainder of this paper is organized as follows.
Section II presents related works including an overview of
other data-mining approaches used for classification of power-
system disturbances or cyber-attacks. Section III discusses the
methodology, the process of common path mining, and the
classifier training and validation phases. Section IV introduces
the case study test bed, test data, and test data preprocessing
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procedure. Section V presents the classification results of three
experiments. Section VI concludes this work and proposes
future work.

II. RELATED WORKS

Current research on applying data mining to synchrophasor
data for power-system fault and disturbance classification can
be found in [12] and [13]. The K-nearest neighbor algorithm
was used to classify three phase faults (3LG), voltage oscilla-
tion, and voltage sag scenarios in [11]. The algorithm accuracy
is not provided in [12]. Hoeffding Tree-based stream data min-
ing is used in [13]. This approach was able to classify 3LG
and 1LG faults grouped for binary classification with greater
than 90% accuracy. Both [12] and [13] used simulated power-
system data. Both [12] and [13] propose methods to mine
synchrophasor data. However, both are designed for power-
system measurement data only and do not incorporate any other
types of system information. By only considering measurement
data, it is impossible to detect cyber-attacks such as fault replay
or command injection attacks in which valid measurements or
control commands are replayed. The work described in this
paper fuses synchrophasor data and control system log infor-
mation to allow precise classification of power-system faults
and cyber-attacks.

Multiple traditional data-mining algorithms were used to
classify power-system faults and cyber-attacks in [11]. The
authors of [11] used the same dataset for algorithm validation as
that used for this paper. The traditional data-mining algorithms
were able to differentiate between power-system disturbances
and cyber-attacks. However, the traditional data-mining algo-
rithms were not able to classify specific fault and cyber-attack
types within each large category.

Many other data-mining approaches have been developed
to extract signatures and classify power-system disturbances,
but they have no ability to detect cyber-attacks. Many such
approaches classify power-system disturbances in the time
domain. Decision trees were used to classify power-system
disturbances in [14] and [15]. Statistical characteristics of
power-system frequency were used in [16] to represent the
signatures of power-system disturbances. Many works have
applied neural networks to classify faults. In [17] with the help
of wavelet transforms, current phase is decomposed and fed
into a particle swarm optimization-based neural network for
fault classification. A Chebyshev neural network is examined in
[18] on current signals to evaluate the fault classification perfor-
mance. In [19], the neural network is integrated with a wavelet
transform multiresolution analysis technique to extract patterns
for faults in shipboard power systems using energy variation of
fault signals. In [20], the authors used a neural network with
current waveforms and data from digital fault recorders to clas-
sify faults, normal maintenance operations, and power-quality
disturbances. The works above all propose batch processing
data-mining approaches to learn patterns for power-system
events. These methods are not suitable for synchrophasor mea-
surement data because batch processing requires all data to be
read into memory to learn patterns. A single PMU can gen-
erate two million daily samples of data and multiple PMU

can quickly exhaust available memory resources. The method
proposed in this paper distinguishes itself from batch process-
ing data-mining approaches by compressing fused synchropha-
sor and system log information into a set of system-state
transitions, which minimize memory requirements during the
training step. Furthermore, the same compression scheme is
used during the classification step allowing the use of pattern
matching to support real-time classification.

The work presented in this paper uses a sequential data-
mining approach to classify patterns from sequences of events.
Sequential data mining is better suited for high-velocity and
high-volume synchrophasor data streams because synchropha-
sor data are discrete data but continuous in time. Additionally,
the common path-mining algorithm presented in this paper
can learn to classify traditional power-system contingencies,
such as faults, and cyber-attacks against power systems which
masquerade as traditional contingencies.

Machine-learning approaches have also been applied to
detect cyber-attacks against power systems, but they do not
consider power-system fault detection. In [21], detection rules
were derived by manually specifying allowable ranges for dif-
ferent system measurements using domain expert knowledge.
Such specification-based methods have been shown to have
high detection accuracy; however, the manual effort required
to develop such a decision tree is too great to apply to a prob-
lem on the scale of power-system protection. Other works have
been found, which provide intrusion detection for synchropha-
sor systems, but they still do not provide power-system fault
detection. An intrusion detection system (IDS) was proposed,
which uses white lists to detect invalid network behaviors based
on a synchrophasor network protocol specification [22]. A sec-
ond proposed IDS uses timing and data-volume information to
identify data-integrity attacks against synchrophasor systems
[23]. However, by looking only at protocol format, timing,
and data-volume information, these methods are not able to
detect insider attacks, e.g., the command injection from a valid
machine where the network packets have legitimate format,
valid timing, and data-volume information. In [24], the authors
manually created rules using the industrial state modeling lan-
guage (ISML) to track SCADA system states. Nader et al. used
a kernel machine-learning method to model SCADA system
normal behavior, in order to detect machine failures and intru-
sions [25]. Due to a lack of attack data, only system normal
behavior was learnt, and therefore, the authors were not able to
test detection of attacks.

This paper presents a data-mining technique to develop
signatures of multiple types of power-system faults and cyber-
attacks. The resulting signatures provide a hybrid specification,
which specifies both normal reactions to faults and symp-
toms of cyber-attacks. The data-mining algorithm presented in
this paper has the distinct advantage requiring far less system
expertise to create signatures.

The data-mining technique used in this paper uses the min-
ing sequential patterns’ technique which discovers patterns of
activity from time-ordered data. The mining sequential pat-
terns’ concept was first presented in [26] as a method to perform
market basket analysis. Mining sequential patterns was used
to discover patterns in clinical client-care management process
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data that consist of patient records and log data over a period
of treatment time in [27]. This technique was extended in [28]
by employing a 2-D Bayesian network to graphically repre-
sent patterns in Hemodialysis processes, which consists of a
sequence of medical activities over time. In order to discover
patterns, a patient’s physiological “state” is defined using clini-
cal log data and patient records (e.g., body temperature, weight,
mood, etc.). The pattern is therefore represented as contiguous
transitions of states in a 2-D graph. Classification was made
using the learnt patterns.

For this work, the frequent pattern (FP)-growth algorithm
as used to mine for frequent sequential patterns. FP-growth
reduces the cost of searching for frequent sequences by adopt-
ing a divide-and-conquer strategy [29]. As demonstrated in
[30], FP-growth algorithm outperforms several popular fre-
quent pattern-mining algorithms in run time, and therefore, it
was chosen for this work. Frequent pattern mining is tradi-
tionally used for market basket analysis, a method to build
associations between commonly purchased items at a store. In
this paper, frequent pattern mining is used to identify associa-
tive relationships between observed power-system states related
to a particular event type or scenario.

Compared with peer works, this work is unique in that we
propose a data-mining algorithm that can learn patterns for
both power-system disturbances and cyber-attacks from het-
erogeneous data including synchrophasor measurements and
device logs from multiple locations in the power system. Learnt
patterns are translated into common paths. Common paths
are used as signatures for pattern recognition. This approach
enables a fast low-memory process for detecting power-system
contingencies and cyber-attacks. It is possible to use separate
classifiers for power-system event detection and cyber intrusion
detection. However, for attacks which mimic power-system
events, a supervisor process (a human or another algorithm) will
be required to analyze outputs from the two separate algorithms
to resolve conflicts. Combining power-system event detection
and cyber-intrusion detection resolves this issue. Furthermore,
this work is unique because it provides a mechanism for precise
classification of power-system disturbances and cyber-attacks
which attempt to mimic the same disturbances. Such precise
classification enables automated response algorithms which
will lead to a more reliable power system.

III. COMMON PATH MINING

A. Sequential Events for a Power-System Scenario

Power-system scenarios can be described as an ordered
sequence of measureable events. For example, Fig. 1 depicts
phase a current magnitude during a 1LG fault on a transmis-
sion line. The current magnitude can be quantized into three
ranges: high, normal, and low which are represented by dark
gray, white, and light gray rectangles shading Fig. 1. When
the system is in a normal state, the current stays in the normal
range, marked as node A in Fig. 1. When the 1LG fault occurs,
current increases to the high range via node B. The protection
scheme will operate two relays, R1 and R2, at both ends of the
transmission line to open breakers and isolate the fault. Current

Fig. 1. Ideal versus actual 1LG fault and protection system response.

magnitude then drops through node C to zero. If following six
notations are used to denote six events: “IR1 = H” as node
“B,” meaning “Current measured by R1 increases to High;”
“IR2 = H” for “Current measured by R2 increases to High;”
“R1 = Trip” for “Relay R1 trips;” “R2 = Trip” for “Relay
R2 trips;” “IR1 = 0” as node “C” for “Current measured by
R1 drops to Zero;” “IR1 = 0” for “Current measured by R2
drops to Zero.” The timestamps of 1LG fault and resulting
protection scheme operation can be represented by expres-
sion (1) where t(·) stands for the timestamp of corresponding
events

t(IR1=H) = t(IR2=H) < t(R1=Trip)

= t(R2=Trip) < t(IR1=0) = t(R2=0). (1)

Expression (1) assumes a fault which appears at both relays
at the same time and assumes that both relays operate at the
same time. In fact, the fault may occur at different locations
along the line leading to variations in the time each relay
observes the fault and variations in relay operation time. Power
systems are dynamic. In Fig. 1, the dashed line shows an ideal
waveform of current magnitude during a fault and the solid
line graphs a waveform captured from real-time digital simu-
lator (RTDS) simulation of a 1LG fault. The actual waveform
includes multiple variations from the ideal waveform. A power
system’s response to load variation, fault location variation, and
transient behaviors results in irregular waveforms. Such varia-
tions are reflected as dispersions in the timestamps of node B
and node C for different instances of the same scenario. The dis-
persion in timestamps can be seen not only in the events related
to the current magnitude but also in the events related to other
features. Fig. 2 shows box plots of timestamps of six events for
three fault scenarios and one scenario where relays R1 and R2
are tripped by attackers. Fig. 2 (X-axis) is the set of observed
events. The box plots represent 40 instances of each scenario.
To provide an ordered sequence, the timestamp of the first event
in a sequence was subtracted from timestamps of all later events
in the sequence. The box plots and the interconnecting edges of
a scenario are depicted using the same color. As shown in Fig. 2,
events take place in temporal order. Event timestamps vary due
to system dynamics. For each scenario, a track can be drawn by
connecting box plot medians. The tracks shown in Fig. 2 gen-
erally agree with expression 1. Expert knowledge can be used
to create similar expressions for all known system behaviors.
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Fig. 2. Distribution of timestamps for events.

However, time variation prevents these from serving as signa-
tures for classification. This leads to the need for a graph to
describe an ordered set of events describing a scenario while
comprehending the variation in timestamps.

Tracks are an ordered list of events with measurements where
each vertex is an event measured at a single sensor. The classi-
fier presented in this paper uses paths which are an ordered list
of system states where a state is snapshot of measurements from
all available sensors at a given time instant. The steps taken to
convert heterogeneous data collected during a scenario into a
path will be introduced in the next section. Path vertices are
states and path edges are transitions between states. Paths are
a means for providing stateful monitoring of the system. The
training process performed to create paths is subject to overfit-
ting due to the time variations seen in Fig. 2. In the overfitting
case, different instances of the same scenario may have different
paths. A technique for common path mining is provided below
to identify shared critical states between a set of paths for a sce-
nario leaving a common path that comprehends the variation in
timestamps.

B. Common Path Mining

The mining common path algorithm is used to derive com-
mon paths for each scenario of interest. Common paths are
maximal frequent sequences found in the set of paths observed
for a given scenario. Common paths can be used as a signa-
ture for a scenario and pattern matching can be used to classify
system events by scenario type.

The Common Path-Mining Algorithm is described below.
The algorithm must be run once for each scenario of interest.

Algorithm 1. Common Path Mining

Input: Raw data from power system for the scenario of
interest
Output: A common path

Step 1) Collect raw data. Raw data consist of measure-
ments and timestamps. Expressions 2–4 show three
measurements and timestamps from two exam-
ple sensors, s1 and s2. Each sensor may measure
a single item or multiple items and each sensor
provides a timestamp. For example, s11 denotes
the measurements from sensor s1 at timestamp 1;

TABLE I
MERGED RAW DATA

s2a1.5
is a measurement from sensor s2 for item a

at timestamp 1.5. Many instances of raw data are
needed for each scenario. All sensors must have a
measurement at time 0

s11 = (s1a1
, s1b1, . . . , ts11) (2)

s21.5 = (s2a1.5
, s2b1.5, . . . , ts21.5) (3)

s12 = (s1a2
, s1b2, . . . , ts12) . (4)

Step 2) Merge raw data. The various sensor data must be
merged into a single database. Since each sen-
sor may take measurements at different times, the
merged data must be time aligned. The highest fre-
quency sensor is used as a baseline. Slower rate
sensor data are merged into the baseline sensor’s
log file. Measurements from slower sensors, which
are between timestamps of the baseline sensor,
are delayed to the next baseline sensor timestamp.
Table I shows an example of merged raw data based
on the input data from expressions 2–4.

Step 3) Quantize data. Data from sensors can take many
forms: real numbers, integers, Boolean values, etc.
Data must be quantized to reduce state space.
For sensors with real and integer values, data can
be quantized into numbered ranges. For exam-
ple, voltage and current can be quantized into
low (0), medium (1), and high (2) ranges accord-
ing to two thresholds r1 and r2. The choice of
r1 and r2 requires expert knowledge. Expression
5 provides an example quantization mapping for
measurement s

q(si) =

⎧⎪⎨
⎪⎩

0, if si ≤ r1

1, if r1 ≤ si < r2

2, if si ≥ r2.

(5)

Step 4) Map to states. A state is a set of merged and
quantized sensor measurements and a timestamp.
Expression 6 shows an example state

Sj = (q (s1i), q (s2i), . . . , ti). (6)

States are stored in a state database. Only unique
states are stored in the database and the state
index j is incremented for each unique state. The
state database is common for all instances of all
scenarios.

After mapping to states, an instance of a sce-
nario can be represented as an uncompressed path.
Expression 7 shows an uncompressed path repre-
senting the kth instance of scenario U

Uk = (S0, S0, S1, S2, . . .). (7)
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Step 5) Compress data into paths. The uncompressed paths
are compressed by removing sequences of states
that do not change leaving just one instance of
that state. This step provides a compression, which
reduces memory usage and results in a tuple that
represents all state transitions for the system. The
state transitions correspond to events. The result
of compression is a path that represents a sin-
gle instance of a scenario. A path Pi is a list of
observed system states arranged in temporal order
according to their timestamps ordered by increas-
ing time

Pi = (S1, S2, . . . , Sn). (8)

Dynamic systems will have many paths for the
same scenario due to minor variations in sampled
data resulting from measurement inaccuracies and
changes in the larger system. For example, power
systems are large interconnected systems. Changes
outside the monitored portion of the power system
may lead to variability in observed measurements,
the same scenario in the monitored portion of the
power system.

Step 6) Mine common paths. The common path-mining
process uses the mining frequent patterns’ algo-
rithm FP-growth [24] to mine for common
sequences of states from P. Among these frequent
sequences, the maximal sequences are used as com-
mon paths. Note that there could be more than one
common path for a scenario.

A sequence α is a subset of a path, i.e., α ⊆ P. Sequence
α is denoted by {Si+1,Si+2, . . . ,Si+m}. A path P contains
sequence α if all of the elements in α appear in P in the same
order. In a set of sequences, a sequence α is maximal if α is not
contained in any other sequences.

Let G be the set of all observed paths for a scenario Q, so that
G = {P1,P2, . . . ,Pn} where n is the number of observed
paths for Q. A path supports sequence α if the sequence is
contained in the path. The number of paths that contain the
sequence α is defined as support count. Given the support count
for the sequence α and the total number of paths in G, the sup-
port for the sequence α can be defined as the support count
divided by the total number of paths in G.

A sequence whose support is greater than a minimum
support threshold is called a frequent sequence. A common
path for scenario Q is a frequent sequence whose support is
greater than a minimum support threshold and is maximal.
There may be multiple common paths for a single scenario.
Common paths reflect the states that occur most frequently for a
scenario.

Table II provides examples of different paths for one sce-
nario. Each path is mined from a measured event database. T
represents the timestamps for states. P1 represents the ideal
case for a path representing a scenario. P2 matches P1, except
that a subset of states is delayed. This may occur due to times-
tamp variation in events or due to system dynamics. P3 contains
an extra state. Dynamics may occur when a feature oscillates

TABLE II
EXAMPLE PATHS FOR A SCENARIO

during a state transition. P4 represents the case when a path is
similar, but a state is different from the ideal case. This could
happen when an event in a state (i.e., S2) does not occur due
to the variation in the timestamp, which results in a different
state (i.e., S11). P5 represents an error path. In the error path,
no sequences match the ultimate common path.

For this example, G = {P1, P2, P3, P4, P5}. If the min-
imum support threshold is set to 60%, the output of FP-
growth algorithm for G is a set of frequent sequences
which meet the minimum support threshold including
{S1, S2, S3, S4, S5} and {S1, S3, S4, S5}. For this exam-
ple, {S1, S2, S3, S4, S5} is maximal and is therefore the
common path. The sequence {S1, S3, S4, S5} is not maxi-
mal because it is contained in {S1, S2, S3, S4, S5}. If the
minimum support threshold is changed to 70%, the maximal
frequent sequence will be {S1, S3, S4, S5}. Since only one
sequence meets the threshold, it is maximal.

Algorithm 2. Classification Using Common Paths, cp

Input: PUT (path under test)
Output: C (Class)

1: For each common path, cpi, in cp:
2: If cpi ⊆ PUT:
3: Add cpi to CCP (list of candidate common paths)
4: Filter CCP for cpi with maximal length
5: If size(CCP) == 1
6: Return class = look-up class of CCP0

7: Else return class = unknown.

The common path is used as a signature during classification.
Changing the minimum support threshold changes the number
of states in a common path and can affect classification accu-
racy. It is not necessary to find a common path which matches
the ideal path, rather the goal is to find a common path which is
unique for a scenario and which leads to maximum classifica-
tion accuracy. For a noisy system, a shorter common path may
yield better classification results.

Common paths are signatures which can be compared to
compressed paths for classification. Algorithm 2 shows the pro-
cess for classifying a single PUT. Algorithm 2 can be used
for real-time classification as shown in Algorithm 3. The while
loop in Algorithm 3 executes at the frequency of the sensor with
the highest sample rate. The merge raw data step in Algorithm 1
is not needed in for real-time processing since the value of all
sensors can be read in each loop iteration. The steps {collect
raw data, quantize data, and map to state} are the same as the
steps of the same name in Algorithm 1. The function call class
(PUT) in Algorithm 3 refers to calling Algorithm 2.
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Algorithm 3. Real-time Classification Using Common Paths

Input: Real-time raw data
Output: Classified scenario type

1: While(true)
2: While (state! = steady_state)
3: Collect raw data sample
4: Quantize data
5: Map to state
6: If (statei! = statei−1)
7: Add statei to path PUT
8: class = class(PUT)

Algorithm 3 can be implemented in a daemon to monitor a
power system in real time. The definition of steady state will
vary by system and can be measured by a lack of state change
over a user-defined period of time.

For the proof of concept described later in this paper, the
common path-mining algorithm was verified by collecting raw
data in advance and using Algorithm 2 to classify paths.

The rest of this paper presents a case study that applies
the mining common path algorithm to a three-bus two-line
transmission system for classifying four types of power-system
symmetric and unsymmetrical faults and three cyber-attacks
scenarios.

IV. POWER-SYSTEM TEST BED

A real-world power system is dynamic and consists of
thousands of buses, loads, transmission lines, and other com-
ponents. The power-system operation goes through various
states and is a continuous process. The three-bus two-line
transmission system used in this work is modified from the
IEEE nine-bus three-generator system [31] according to our
simulation requirements. Although this system is relatively
small, it captures the essence of the larger power system and
is small enough to be comprehensible in every detail. Multiple
instances of the classifier proposed in this work would be
deployed to monitor sections of a power system. The case
study system uses commercial PMU and relays from two major
vendors. The test bed and datasets exhibit behaviors of a real
power system, yet fit into the resources available in the lab
in terms of hardware and software limitations. Because the
three-bus two-line transmission system is capable of varying
generation from two sources, varying load, simulating faults
on two transmission lines at locations with 1% increments,
simulating loss of a transmission line due to control action or
fault, and of multiple cyber-attacks, it is adequate for proof of
concept of this work. The transmission system used for HIL
simulation for this work is shown in Fig. 3.

A. Simulated Scenarios

The power-system disturbances and three types of attacks
simulated for this work are described as follows.

1) Power-System Faults: In this work, we consider
symmetric and unsymmetrical faults in a power system as the
examples of disturbances. A power-system fault is a condition

Fig. 3. Three-bus two-line transmission system for case study.

where the system voltage, current, and frequency are abnormal.
Typically, 1LG faults, double-line-to-ground (2LG) faults,
three-line-to-ground (3LG) faults, and line-to-line (LL) faults
represent greater than 95% of faults in a power system [31].
In this work, for proof of concept, we simulated phase-a-to-
ground fault for 1LG faults, phase-a-b-to-ground faults for
2LG faults, phase a-b-c-to-ground fault for (3LG) faults, and
phase-a-to-b LL fault for LL faults.

2) Trip Command Injection Attack: Trip command injec-
tion attacks create contingencies by remotely sending unex-
pected relay trip commands from an attacker’s computer to
relays at the ends of a transmission line. The trip command
injection attack used for this work closely mimics the 1LG
fault. The attack was implemented against relay R1 and R2
by replaying relay trip commands captured from Modbus over
Transmission Control Protocol (TCP) network traffic. However,
we assume that these commands are sent from a compro-
mised legitimate computer, such that these commands cannot
be detected by a network event monitor as attacks since they are
from a valid source and have valid formats. The two relay trip
commands open the breakers at the ends of transmission line
L1. This attack stresses the system by forcing L2 to carry more
power flow, which may cause cascading failures in a power
system. However, for this work, cascading failures were not
simulated. The trip command injection attack instances were
created under random load conditions in the same range used
for faults.

3) Aurora Attack: The Aurora vulnerability refers to poten-
tial harm caused to a generator by intentionally opening and
closing a breaker near the generator in rapid succession [33]. In
this work, an aurora cyber-attack was simulated, which periodi-
cally sends opening–closing commands to relays that cause the
breaker on the transmission line to open and close at a very fast
pace.

4) 1LG Fault Replay Attack: The 1LG fault replay attack
attempts to emulate a valid fault by altering system measure-
ments to mimic a 1LG fault followed by sending an illicit
trip command from a compromised computer to relays at the
ends of the transmission line. This attack may lead to confu-
sion and potentially cause an operator to take invalid control
actions. A Python script is used to initiate an MITM attack
between the hardware PDC and the historian. The attack replays
synchrophasor measurements from a valid 1LG fault and then
replays commands to trip the relays on the affected line.

B. Test Bed Architecture

The HIL test bed shown in Fig. 4 was used to simu-
late the distance protection scheme on the three-bus two-line
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Fig. 4. Hardware in the loop test bed.

transmission system and implement the faults and cyber-attacks
scenarios. The RTDS was used to simulate transmission lines,
breakers, generators, and load. Four physical relays were wired
to the RTDS in a HIL configuration. The relays implemented a
two-zone distance protection scheme. The relays trip and open
the breakers once a fault occurs on a transmission line. Fault
logics for different types of faults were created in RSCAD and
then the faults were implemented in the RTDS. Prior to each
implementation of a fault, the system load was randomized
in the range of 200–399 MW. Each fault instance was imple-
mented at a random location in 1% increments from 10% to
90% of line L1.

The relays used in this work are the GE-D60 and SEL-
421. Both are digital relays with integrated PMU functionality.
However, PMUs and relays were drawn separately in Fig. 4.
The PMUs stream real-time synchrophasor measurement data,
using the IEEE C37.118 protocol at a rate of 120 samples/s, to
the PDC. Then, aggregated synchrophasor data are forwarded
to the OpenPDC software. The electrical parameters from
RTDS simulation and PMU measured values were compared.
The current transformer (CT) and potential transformer (PT)
ratios of the simulated power-system model and of the actual
hardware PMUs and the scaling factors of I/O components
were adjusted to make the output from the RTDS simulation
and PMU measurements close to identical. Validation of the
HIL configuration required two steps. First, the power-system
model described in [34] was implemented as a baseline. The
RTDS simulation, PMU, and PDC voltage, current, and fre-
quency were compared for dynamic and steady-state conditions
described in [34]. Simulated and measured voltage, current,
and frequency results matched with values noted in [34]. The
baseline system was modified to create the three-bus two-line
transmission system without altering the external hardware con-
figuration. After altering the power-system model RTDS, PMU,
and PDC voltage, current, and frequency continue to match.
Fig. 5 shows overlapping voltage magnitude from the RTDS
simulation and PMU. The voltages seen in simulation and at
the PMU are the same throughout the simulated events. Current
and frequency plots, as well as PDC measurements, also match
but are not shown in the figure to save space.

A python script processes the synchrophasor measurement
data received by OpenPDC into a comma-separated values for-
mat (CSV) file for each instance of a scenario. A row in the

Fig. 5. Comparison of voltage measured by PMU and RTDS.

CSV file includes readings of frequency, current phasors, volt-
age phasors, and sequence components from the four PMUs,
and a timestamp. Each CSV file is labeled with the instance
number, scenario name, as well as load ranges and/or fault loca-
tion at the moment the instance of the scenario occurs. The
label is useful for grouping instances as will be discussed in
Section V. The label is also used for training and classifier test-
ing. The four relays were sources of timestamped relay state
changes. There is also a network event monitor that logs any trip
command packets sent to relays. All logs and synchrophasor
measurement CSV files were stored by a historian.

For this work, simulation of all scenarios starts from a stable
state and ends at a stable state. Faults last for 1 s and the relay
closes the breaker 2 s after opening. Also, the distance pro-
tection scheme was simplified by disabling reverse time-delay
backup and limiting the number of protection zones for each
relay to 2. Each relay provides primary protection up to 80%
of the line (Zone 1 protection) and backup protection (Zone 2
protection) up to 150% of the line. The trip time for Zone 1 pro-
tection is set to instantaneous, while the trip time for the Zone 2
protection is set to 20 cycles.

C. Test Data and Data Preprocessing

In total, 1023 instances of 1LG faults, 274 instances of 2LG
faults, 584 instances of 3LG faults, 272 instances of LL faults,
274 instances of command injection attacks, 225 instances of
aurora attack, and 703 instances of 1LG fault replay attack were
simulated. Test data consist of the synchrophasor measure-
ment CSV files, the four relay logs, and network event-monitor
logs collected during all of these scenarios. The relay log
that contains timestamp and corresponding event information
(trip or nontrip) was extracted from the relays. The network
event-monitor log contains timestamp and corresponding net-
work events (trip command seen or not seen). Each CSV file
contains tuples with 52 synchrophasor measurements as each
PMU provides 13 measurements including voltage and current
phasor magnitude (Va, Vb, Vc and Ia, Ib, Ic), zero, positive
and negative sequence voltage and current phasor magnitude
(V0, V1, V2 and I0, I1, I2), and apparent line impedance (Z).
A single CSV file has approximately 2000 tuples for an instance
of a single scenario. Since the PMU streams at 120 samples/s,
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2000 tuples correspond to 17 s of simulated system time per
scenario. The test data were separated into training and testing
datasets, each of which was the input to common path mining
and classifier algorithms described in the previous section.

Rather than using all recorded input features from the dataset,
only a portion of measurements was retained as selected fea-
tures. In this work, the selected features contain relay status
and the three-phase current magnitudes (Ia, Ib, Ic). Relay sta-
tus was used as a feature because all cyber-attacks studied in
this work maliciously trip relays via the network. The network
event-monitor log was selected as one of the features for the
same reason. The three-phase current magnitudes were selected
because the current magnitudes of the three phases were the
most significant measurements during symmetric and unsym-
metrical faults. Other unselected measurements were discarded
from the input data.

The measurement data from the PMU and relay log were
merged into a single file for one instance of a scenario. The
PMU current magnitude measurements were measured at 120
samples/s, while relay status occurs asynchronously. To merge
the features, phase current was chosen as a reference and the
relay status was up-sampled prior to merging.

Each feature was quantized into finite ranges. The phase cur-
rents were quantized into low, normal, and high ranges. The low
range was 0–99 Amperes (A). The normal range was 100–1199
A. The high range was greater than 1200 A. The relay status
was quantized into two values: 1) tripped; and 2) nontripped.

The aggregated features describe the system state at
a given timestamp. A system state thus is a vector of a
timestamp and features with quantized measurements. An
example of state that describes relay R1 and R2 tripping
due to high current magnitude can be represented as a vector
Timestamp, IR1 = High, IR2 = High, R1 = Trip, R2 =
Trip, . . ., where “IR1 = High” and “IR2 = High” in the
vector represent high-current magnitudes measured by PMUs
in R1 and R2. “R1 = Trip” and “R2 = Trip” in the vector
represent relay trip status of the two relays. The time difference
between two states is same as that between two rows, which
is the reciprocal of the synchrophasor measurement rate;
1/120 samples/s = 8.3 milliseconds (ms). The timestamps
of rows in the file were normalized by subtracting the time of
the first row from all other rows. This causes all files for all
scenario instances to start from time 0.

V. EVALUATION

Three experiments were performed to validate the common
path-mining algorithm. Experiment 1 classifies two classes,
1LG fault and command injection attack. This was an initial
proof of concept to show that the algorithm can distinguish
a fault from a single attack intended to mimic the fault.
Experiment 2 repeated Experiment 1 with the fault labels pre-
processed into groups by fault location and system load. This
was done to show that the common path-mining algorithm can
learn unique paths for sequences of events with very small dif-
ferences. In Experiment 3, four types of short-circuit faults
and three types of cyber-attacks were simulated. This experi-
ment demonstrates that the common path-mining algorithm can

TABLE III
CONFUSION MATRIX FOR EXPERIMENT 1

learn paths for larger sets of symmetric and asymmetric faults
and multiple different cyber-attacks. To test for overfitting,
captured data from experiment 3 were used to test classifier
accuracy using 10-round cross-validation. Experiment 3 was
also repeated with varying PMU sample rates to show the effect
of sample rate on classifier accuracy. For each experiment, the
training phase that computes a set of common paths is described
in Algorithm 1 in the previous section; the testing phase that
classified testing paths is described in Algorithm 2.

A. Experiment 1

For the first experiment, approximately half of the test data
for 1LG fault and command injection attack was randomly cho-
sen as a training dataset, while the rest was used as a testing
dataset. This resulted in 519 instances of 1LG fault and 127
instances of the command injection attack, which were used for
training. Table III is a confusion matrix from Experiment 1.

For this work, accuracy, misclassification, and unknown rates
were defined as follows. The accuracy rate is the percentage of
instances correctly classified. Misclassification rate is the per-
centage of the instances of a class which were misclassified as
another scenario. The unknown rate is the percentage of the
instances of a scenario which were not classified as any sce-
nario. Unknown instances either match no common paths or
match more than one common path from more than one class.

For the first experiment, the overall classification accuracy
was 95%. No instances were misclassified. A total of 5% of
tested scenario instances were unknown. All unknown instances
matched at least one fault and at least one command injection
common path.

There were a total of 221 common paths found for the two
scenarios: 203 for 1LG fault scenario and 18 for the command
injection scenario. This high number of paths results from the
dynamic nature of the power system. Fig. 6 is a plot of the
fault location, from the perspective of relay R1, versus relay
trip times for relays R1 and R2. Fig. 6 clearly shows zone 1
and zone 2 trip boundaries for both relays. Additionally, Fig. 6
shows that the relay trip times vary with fault location espe-
cially in the fault location region from 24% to 79% of the
transmission line. The large number of common paths for the
1LG fault injection scenario is primarily due to this variation.
System behavior also varies as the system load changes.

B. Experiment 2

Ideally, faults between 0% and 20% of the transmission line
should have instant trip time for relay R1 and trip after 20
cycles for relay R2. Faults between 80% and 100% of the
transmission line should trip after 20 cycles for relay R1 and
instantly for relay R2. In the 21%–79% range, both relays
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Fig. 6. Relay trip time versus fault location for relays R1 and R2.

should ideally trip instantly. Observed trip times match the ideal
case for the 0%–20% and 80%–100% ranges. Note, the appar-
ent impedance setting for zone 2 for relay R2 causes the zone
1-to-zone 2 transition to occur at approximately 23% of the
line (77% of the line from relay R2’s perspective) instead of
at the expected 20% of the line (80% of the line from relay
R2’s perspective).

The trip times from 24% to 80% of the line are always
instantaneous. Observed trip times tended to increase as the
fault approached the zone 1 to zone 2 boundary points. To
compensate for this observed behavior, the 1LG fault paths
were grouped by fault location per the following groups: 10%–
23%, 24%–29%, 30%–35%, 36%–40%, 41%–60%, 61%–
65%, 66%–70%, 71%–80%, 81%–90%. Additionally, it was
observed that trip times partially correlated with the system
load. As a result, the 1LG fault class used in Experiment 1 was
divided into multiple classes by fault location and load. Four
load ranges were used: (200–249, 250–399, 300–349, 350–
399 MW). This subdivided the 1LG fault class into 9 ∗ 4 = 36
subclasses.

The command injection attack class in Experiment 1 was also
divided using four load ranges, which results in four command
injection attack classes.

The extra step of subdividing the 1LG fault class and com-
mand injection attack results in a total of 40 classes. The
training dataset and testing dataset in this experiment is the
same as that used in Experiment 1.

Table IV is a confusion matrix for all scenarios for
Experiment 2. As previously mentioned, the 1LG fault classes
were divided by fault location and system load. To save space,
the groups in the confusion matrix were combined to just show
the fault location classes and one command injection class. An
extra row (marked Unk. for unknown) was added to the con-
fusion matrix to show instances of scenarios, which were not
classified.

Experiment 2 classification accuracy, misclassification, and
unknown rates can be viewed from multiple perspectives. The
overall accuracy rate for the groups shown in the confusion
matrix was 87.6%. Misclassification and unknown rates for the
same groups were 9.1% and 3.3%, respectively. From the con-
fusion matrix, the majority of misclassification occurred when
1LG fault groups were classified as members of a neighboring
or nearby fault group. The unknown cases are separated into
unknown instances, which resulted from an instance matching
multiple fault common paths (“Unk. fault” in Table III) and

TABLE IV
CONFUSION MATRIX FOR EXPERIMENT 2

Fig. 7. 2-D coordinates documenting 1LG fault versus command injection
attack common paths.

unknown instances which matched no common path. The 16
cases of faults, which matched common paths from more than
one group, all occurred because both the (30%–35%) and the
(36%–40%) shared a common path.

The intent of subdividing the 1LG fault class was not to clas-
sify 1LG faults by a specific fault location. Correctly classifying
a fault as a fault is sufficient as many algorithms are available
to provide fault location information. The accuracy rate when
the fault location classes were combined into a single class is
96.7%. The misclassification rate was 0% and the unknown rate
was 3.3%.

Common paths can be mapped into 2-D coordinates with the
Y-axis indicating the state identification code (state ID) and the
X-axis indicating normalized timestamps. An edge between two
vertices represents the temporal transition between two states.
Each vertex is marked with state information. Fig. 7 shows
common paths for two scenarios, a 1LG fault in the 36%–40%
fault location group and a command injection attack. Both the
fault and command injection common paths start at the system
normal state. These paths differ immediately because, for faults,
the PMU will measure high current when a fault is present.
This makes the second state of the fault common path high cur-
rent detected at relay R1. The command injection attack occurs
when there is no fault present. As such, the second state for
the command injection attack has normal current at both relays,
while both relays’ status indicates a trip.

Fig. 8 shows common paths for two different 1LG fault loca-
tions. Note that not all features are displayed in the vertex
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Fig. 8. 2-D coordinates comparing two common paths for 1LG faults of
different locations.

labels. The 10%–23% fault is in relay R2 zone 2 and the 24%–
29% fault is in relay R2 zone 1. This difference is the primary
reason for different paths for the two fault subgroups.

Figs. 7 and 8 demonstrate that common paths contain the
critical states for different scenarios. The primary contribu-
tion of the common path-mining algorithm is the ability to
automatically learn unique paths for each scenario type from
data.

Training and testing processing time and memory usage
were measured using an Ubuntu Linux Virtual Machine with
3.5 GHz CPU and 2 GB memory. For Experiment 1, train-
ing required 202 s and 25.3-MB memory with approxi-
mately 2.5-GB time-synchronized data. Experiment 1 testing
required 0.85 s per scenario instance. For Experiment 2, train-
ing required 205 s and 25.2-MB memory for the same amount
of training data. Experiment 2 testing required 0.83 s per sce-
nario instance. The difference in classification time between
the two experiments is likely due to host computer load vary-
ing between experiments. Classification is a pattern-matching
exercise similar to other pattern-matching technologies such
as virus scanners or rule-based network intrusion detection
systems. The classification testing for this work was not opti-
mized for actual use in a real system. To build a real-time
classifier, a program would be required to collect raw data
samples, quantize data, and map data to states (steps 3–5 of
Algorithm 3). The instances used for testing in this work each
required approximately 17 s of wall clock time to occur in the
system. For a synchrophasor system with 120 samples/s, there
are 8.3 ms between samples. This time could be utilized to pro-
cess samples and perform the comparison, and a decision tree
architecture could be used to facilitate fast pattern matching.

C. Experiment 3

A third experiment was conducted for classifying four types
of symmetric and unsymmetrical faults and three types of
cyber-attacks. The training phase used the same methodology
as Experiments 1 and 2. Validation in this experiment used 10-
round cross-validation. In each round, half of the test data was
randomly chosen as a training dataset and the remaining data
were used as the testing dataset. Table IV is a combined confu-
sion matrix for 10 rounds of validation for the 1LG, 2LG, 3LG,

TABLE V
CONFUSION MATRIX FOR FOUR TYPES OF FAULTS

AND THREE CYBER-ATTACKS

Fig. 9. Accuracy rates for 10-round cross-validation with different PMU
streaming rates.

LL faults, command injection, Aurora, and fault replay attacks.
Each entry in the table sums up numbers for 10 rounds in the
corresponding location.

The total number of classifications made in Table V is
16 885, of which 15 740 instances are correctly classified. The
average accuracy for the seven classes shown in Table V is
93.21%. Only 488 instances of faults (177 of 1LG fault, 58 of
2LG fault, and 15 of 3LG fault and 238 for LL) were classified
as unknown, and only six instances of faults are misclassi-
fied as cyber-attacks. The lowest accuracy for an individual
class or scenario type was for fault replay attacks. Fault replay
attack classification accuracy was 90%. Fault replay attacks
were misclassified as a fault for 3.6% of the tested instances
and misclassified as a command injection attack for 3.5% of
tested instances. The fault replay attack is intended to mimic a
1LG fault and as such is sometimes able to confuse the clas-
sifier. The fault replay includes elements from the command
injection attack. This leads to similarities which cause occa-
sional misclassification as a command injection attack. Table IV
demonstrates that the classifier is able to distinguish faults and
cyber-attacks.

The accuracy rate for 10-round validation when the PMU is
sample rate at 20, 30, 60, and 120 Hertz (Hz) is plotted in Fig. 9.
Classification accuracy is higher when the PMU is streaming at
120 Hz and lowest at 20 Hz. However, event at 20-Hz accuracy
exceeds 80%. This is reasonable as higher PMU samples rates
gives better visibility of the system states when fast-moving
events, such as faults, are considered.

Table VI shows a comparison of classifier results from the
Random Forest, JRip, Adaboost + JRip, and common path-
mining algorithms. The values for Random Forest, JRip, and
Adaboost + JRip are from the work described in [11] which
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TABLE VI
COMPARISON OF COMMON PATH MINING TO OTHER ALGORITHMS

used datasets derived from the same test bed as this com-
mon path-mining algorithm evaluation for training and testing.
Among the four algorithms, Adaboost + JRip has the highest
value in four metrics: accuracy, precision, recall, and F mea-
sure. Accuracy, precision, recall, and F measure for the com-
mon path-mining algorithm were computed from the results
for Experiment 3 of this work. Note that the mining common
path classifier uses seven classes and has similar performance
to Adaboost + JRip classifier with only three classes. The
Random Forest, JRip, Adaboost + JRip classifiers used the
following classes: normal behavior, attack events, and natu-
ral events. The mining common path classifier classes were
three separate attacks and four types of faults (natural events).
The ability to make a precise classification versus a broad cat-
egory while maintaining high accuracy makes the common
path-mining algorithm promising. Such precise classification
is necessary to quickly understand the root cause of events to
enable automated response.

VI. CONCLUSION AND FUTURE WORK

The common path-mining algorithm creates common paths
from heterogenerous data in the power system. A common path
represents a set of critical states in which a system will step
through in temporal order for a scenario such as a disturbance
or a cyber-attack. Common paths can be used as signatures
to classify power-system behaviors with high specificity. Such
a classifier is a useful tool for use with automated system
integrity protection systems and wide-area control systems,
which include responses for both natural, equipment failure,
and cyber-attack-related contingiencies.

Simple paths can be derived from monitored instances of
sceanrios applied to a test bed. However, the transients present
in time-domain measurement data lead to different paths for
different instances of the same scenario. The common path-
mining algorithm uses a sequential pattern-mining approach to
overcome this challenge and common paths for the scenario.

To validate the correctness of the algorithm, a case study was
performed, which applied the common path-mining algorithm
and classifier to detect disturbances and cyber-attacks. The clas-
sifier provides a capability to accurately distinguish between
different types of power-system faults and cyber-attacks includ-
ing command injection, aurora attacks, and fault replay attacks.
Three separate experiments were performed. The first experi-
ment applied the common path-mining algorithm to data with
two classes: 1LG fault and command injection. The second
experiment adds an extra step prior to the training phase where

the 1LG fault class is divided into a number of subclasses
by taking advanatage of power-system domain expertise. The
extra step of subdividing classes in training produces slightly
better accuracy, misclassification, and unknown classification.
Both experiments required similar training time, testing time,
and memory usage. A third experiment was conducted using
the same training as Experiment 2. Ten-round cross-validation
was performed with varying PMU sample rates. The 10-round
validation shows that the classifier has not overfit the data.
Comparison of varying PMU sample rates shows that the
highest accuracy is achieved with PMU sampled in 120 Hz.
This is expected since faults are fast-moving events and the
120-Hz sample rate provides the most visibility of system-state
changes.

This paper demonstrates a methodology to leverage syn-
chrophasor measurements for power-system disturbance and
cyber-attack detecion and highlights the promise of the minin-
ing common paths aglorithm. Future work includes applying
the algorithm to larger systems with more known types of
disturbances, control actions, and cyber-attacks.

The common path-mining algorithm was evaluated using a
three-bus two-line transmission system. It is possible to scale
up for larger systems by sampling system state from larger por-
tions of a power system. Training and classification time will
increase linearly as the number of tuples in a sample increases
based on the property FP-growth algorithm [30]. This leads
to an effective limit on the number of measured tuples used
for one instance of the classifier. When this limit is reached,
different portions of a power system can be monitored by sep-
arate instances of the classifier. Using multiple instances of
the classifier leads to two potential future works. First, classi-
fiers will have overlapping visibility. As such, a method will
be needed to rationalize results from overlapping classifiers.
Second, a partitioning scheme is needed to determine classifier
boundaries.
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