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Task scheduling is an essential component of any distributed system because it routes tasks to appropriate resources for execution,
such as grids, clouds, and peer-to-peer networks. Common scheduling algorithms include downsides, such as high temporal
complexity, non-simultaneous processing of input tasks, and longer program execution times. Exploration-based scheduling
algorithms prioritize tasks using a variety of methods, resulting in long execution times on heterogeneous distributed computing
systems. As a result, task prioritization becomes a bottleneck in such systems. It is appropriate to prioritize tasks with the shortest
execution time using faster algorithms. �e genetic algorithm (GA) is one of the evolutionary approaches used to solve complex
problems quickly.�is paper proposes a parallel GA with a MapReduce architecture for scheduling jobs on cloud computing with
various priority queues.�e fundamental aim of this study is to employ aMapReduce architecture to minimize the total execution
time of the task scheduling process in the cloud computing environment. �e proposed method accomplishes task scheduling in
two stages: �rst, the GA was used in conjunction with heuristic techniques to assign tasks to processors, and then the GA was used
in conjunction with the MapReduce framework to assign jobs to processors. In our experiments, we consider heterogeneous
resources that di�er in their ability to execute various tasks, as well as running a job on di�erent resources with varying execution
durations. �e results show that the proposed method outperforms other algorithms such as particle swarm optimization, whale
optimization algorithm, moth-�ame optimization, and intelligent water drops.

1. Introduction

One kind ofdistributed computing system is heterogeneous,
in which several processors are used to do the same work [1].
In cloud computing, task scheduling is separated into a
series of lower priority tasks for processing [2]. �ese sub-
tasks exhibit precedence constraints in the sense that the
outcome of previous tasks is required before executing the
current sub-task [3]. It may lower the task completion time
by breaking a computer work into sub-tasks and executing
them on numerous processors. As a result, the goal of this
study is to arrange sub-tasks on a variety of available pro-
cessors in order to minimize task completion time without
breaching precedence requirements [4].

�e development of task scheduling algorithms that
distribute sub-tasks of a program to processors is a challenge
in cloud systems. Despite recent improvements in the area of
task scheduling, this problem remains a signi�cant challenge
in heterogeneous computing settings[5, 6].

Reduced execution time of the scheduling algorithm
remains an essential problem due to the rise in the quantity
of data in the cloud environment. As a result, several
techniques for reducing task completion time by parallel-
izing sub-tasks and honoring their precedence connections
have been proposed. A directed acyclic graph, which consists
of vertices that represent tasks and directed edges that in-
dicate task dependency, is often used to depict precedence
relationships. It is acceptable and expressive to deliver
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programs with a vast and varied volume using directed
acyclic graphs [7, 8]. On the other hand, the Hadoop system
enables task execution in a shared data center [9]. Map-
Reduce is an excellent Hadoop technique for processing
massive data in cloud computing that runs instructions and
programs in parallel utilizing processors or computers [10].
In a distributed setting, this programming paradigm enables
the creation of parallel and distributed processing on a huge
number of data [11].'is framework is provided with several
methodologies and applications in various disciplines, such
as algorithms with high time complexity in huge data, which
decreases algorithm execution time by enhancing parallel
processing [12]. As a result, this article discusses how to
schedule priority jobs on directed acyclic networks using the
genetic algorithm (GA) and the MapReduce framework.'e
proposed method accomplishes task scheduling in two
stages: the GA was used in conjunction with heuristic
techniques to allocate tasks to processors in the first stage,
and the GA was used in conjunction with the MapReduce
framework to assign jobs to processors in the second stage.

In essence, the following are the article’s objectives:

(i) Creating a new combination of GA with MapRe-
duce framework to assign jobs to processors.

(ii) Using theMapReduce architecture for scheduling in
heterogeneous cloud environments.

(iii) Reducing the overall program execution time.
(iv) Accelerating the convergence of solutions and

avoiding premature convergence.

'e remainder of the paper is structured as follows.
Section 2 examines various essential strategies for work
scheduling in cloud computing. 'e overall structure and
recommended approach are presented in Section 3 utilizing
the MapReduce framework. Section 4 analyzes the acquired
findings and compares the proposed approach to other
algorithms. Section 5 concludes with the conclusion and
future works.

2. Literature Review

'is section discusses approaches for task scheduling as well
as the benefits and drawbacks of different methods. 'is
study also describes the fundamental concept of the sug-
gested scheduling approach after examining the current
methods. 'e main issue of this paper is the multiobjective
aspect of job scheduling in cloud computing. Among the
different scheduling concerns, one of the NP-hard optimi-
zation problems is scheduling the machine with parallel
processors.

Two list-based scheduling methods, heterogeneous
earliest-finish-time (HEFT) and critical-path-on-a-pro-
cessor (CPOP), have been introduced in [13] in order to
concurrently meet the two objectives of high efficiency and
quick scheduling. To lower the quickest start time, the
HEFT algorithm picks a task with the upward rank at each
stage and assigns it to processors using the insertion-based
technique. 'e CPOP algorithm, on the other hand, pri-
oritizes by aggregating upward and downward rank into

tasks. Another difference between the two algorithms is in
the assignment of the processor to the tasks, with the
CPOP method executing the critical path tasks on the
processors, hence minimizing the execution time of all
critical path tasks. Shabestari et al. [14] proposed an ant
colony method (ACO)-based scheduling algorithm. 'e
goal of this scheduler is to reduce the workflow time of the
group of tasks while also reducing the maximum com-
pletion time of the complete job. 'is technique enables
more agile work while decreasing completion time. 'e
results of the evaluation also revealed that the ACO al-
gorithm outperforms the random and best-effort methods.
Liu [15] created an ant colony algorithm-based adaptive
work scheduling system for cloud computing. Pheromones
may now be updated dynamically in response to changes in
the environment to the polymorphic ant colony algorithm
to increase the algorithm’s convergence speed and suc-
cessfully prevent the formation of local optimum solu-
tions. Based on the tasks supplied by users, the enhanced
algorithm tries to develop a distribution plan with a
quicker execution time, reduced cost, and balanced load
rate. 'eir experiment results demonstrate that the
modified adaptive ant colony algorithm can rapidly dis-
cover the ideal solution to the cloud computing resource
scheduling issue, shorten job completion time, minimize
execution cost, and keep the overall cloud system center
load balanced.

For handling multi-objective task scheduling in cloud
computing, Manikandan et al. [16] offered a unique hybrid
whale optimization algorithm-based MBA algorithm. 'e
multi-objective behavior of the hybrid WOA-based MBA
algorithm reduces the makespan by optimizing resource
consumption. By using the mutation operator from the bees
algorithm, the output of the random double adaptive whale
optimization algorithm (RDWOA) may be made to be of
higher quality. 'e performance of the algorithm is analyzed
and compared to that of other algorithms that make use of
the CloudSim tool kit platform for various criteria like the
amount of time it takes to finish, the amount of money it
costs to compute, and so on. 'e study reveals that the
suggested method is superior to other algorithms in terms of
performance metrics such as computational cost, execution
time, makespan, and resource consumption. 'ese metrics
were evaluated in relation to the findings obtained. To
schedule a set of user tasks on a set of VMs, Imenea et al. [17]
presented a third-generation multi-objective optimization
method for the first time to our knowledge called non-
dominated sorting genetic algorithm (NSGA-III). 'e
method is used in the cloud to minimize the runtime (TE),
power consumption (CE), and cost. Manikandan et al. [18]
suggested a system that uses fuzzy C-means clustering hy-
brid algorithms for job scheduling and fish swarm opti-
mization for optimal resource allocation to minimize cost,
energy, and resource use. Shukri et al. [19] suggested an
enhanced version of the multi-verse optimizer (EMVO) as a
better job scheduler in this field. In terms of minimizing
makespan time and boosting resource usage, the findings
reveal that EMVO outperforms both MVO and PSO
algorithms.
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'e task scheduling and resource provisioning chal-
lenges have become an appealing paradigm in the cloud
sector, owing to the rising demand for services offered by
VMs that are organized by actual servers owned by cloud
service providers’ data centers (CSPs). In [20], the authors
suggested a novel model based on a multi-agent system for
task scheduling and resource provisioning that uses deep
reinforcement learning to reduce energy costs. A quantile
regression deep Q network method delivers the best policy
and long-term choices. A series of tests demonstrate the
efficacy of the suggested scheduling strategy as well as the
performance of the proposed job allocation mechanism. In
[21], the ant particle swarm genetic algorithm is presented as
a mix of PSO-ACO-GA for work scheduling on cloud
computing VMs. Here, PSO and GAwill iterate to determine
the job based on fitness value, and ACO will distribute the
work to particular VMs. 'is article improves on charac-
teristics such as CPU usage, execution time, and makespan.

Mangalampalli et al. [22] used the cat swarm optimi-
zation (CSO) algorithm to solve task scheduling in cloud
computing. 'e presented algorithm considers lifetime,
migration time, energy consumption, and the total cost of
power in data centers. Tasks are scheduled in the proposed
algorithm by calculating task priorities at the task level and
calculating VM priorities at the VM level to plan the ap-
propriate mapping of tasks on virtual machines.

Amer et al. [23] used the modified Harris hawks opti-
mizer (HHO) algorithm to solve the multi-objective
scheduling problem. To improve the quality of the standard
HHO algorithm’s discovery phase, a scientific smart method
called elite opposition-based learning is used. Furthermore,
the minimum completion time algorithm is used as the first
phase to obtain a determined initial solution rather than a
random solution at each run time, avoiding local optimi-
zation and improving the quality of service in terms of
program length minimization. Furthermore, the minimum
completion time algorithm is used as the first phase to obtain
a determined initial solution rather than a random solution
at each run time, avoiding local optimization and improving
service quality by minimizing program length to cover
implementation costs while maintaining service quality.

3. The Proposed Algorithm

As mentioned earlier, the suggested approach accomplishes
task scheduling in two stages: in the first stage, the GA was
used in conjunction with heuristic techniques to allocate
tasks to processors, and in the second stage, the GA was used
in conjunction with the MapReduce framework to assign
jobs to processors. 'e problem variables are described
initially in this part, followed by procedures to construct GA
for combining cloud services.

3.1. Initial Definitions. 'e suggested approach employs a
collection of heterogeneous P processors linked by a high-
speed network. 'e issue of task scheduling is mapped on a
directed graph G(V, E) in this method. So, V represents the
program’s sub-tasks, and E represents the graph edges that

specify the dependencies between the sub-tasks. Each sub-
task in the graph can only be executed on a single processor.
'e amount of communication cost between the two sub-
tasks is represented by edge values, and the average com-
putational cost of each sub-task in the processors is mea-
sured on each node. 'e example described in this study is
shown in Figure 1.

Table 1 lists the symbols used in this paper’s equations
and algorithms.

'e communication cost between two linked sub-tasks is
zero if they are scheduled on the same processor. 'e start
and end nodes in the graph represent the beginning and end
of the program, respectively. 'e utilization model of the
proposed method is unrelated, which implies that one
processor may perform some activities in less time and
others in more time, as shown in Table 2. Furthermore, all
previous sub-tasks must be scheduled and completed before
commencing to execute a sub-task.

Following the creation of the initial population, each
chromosome is evaluated and ranked based on total exe-
cution time; this ranking is referred to as the suitability value
of each chromosome. In the ranking, the HEFT processor
allocation algorithm is employed. 'e fusion process is then
initiated by choosing and merging several chromosomes.
'e parallelism procedure is performed on the chromo-
somes after the fusion step. 'e proposed method is exe-
cuted until the termination condition is satisfied. In the next
portion of this research, the details of each step of the
suggested algorithm and accompanying pseudocodes will be
discussed.
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Figure 1: A directed graph that does not rotate and has ten sub-
tasks [5].
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3.2. Initial Population Quantification. Making a chromo-
some through encoding is the first stage in populating the
population. 'e suggested algorithm’s chromosomal
structure contains a gene that provides a solution to the task
scheduling issue. A chromosome’s structure is a permuta-
tion of natural numbers from 0 to n1, which shows the order
of priority of jobs in a non-rotating directed graph. Fur-
thermore, the topological arrangement of tasks on the
chromosomemust be valid.'e proposed method places the
starting job at the very first position on the chromosome and
the job at the very end of the chromosome, known as the end
node. 'e additional jobs are located on the chromosome in
locations that do not contradict task precedence. All sub-
tasks in the graph must be planned for scheduling to be
feasible.

'e PopSize symbol represents the proposed algorithm’s
starting population size, which is four times the number of
jobs in the network (4n). 'e algorithm’s population size
remains fixed until the conclusion of the algorithm. 'is

means the population size does not fluctuate throughout the
creation of new generations. In the proposed algorithm,
three exploratory ranking policies called upward rank
(equation (1)), downward rank (equation (2)), and a com-
bination of these two methods with level ranking (equation
(3)) have been used to quantify the first three chromosomes
of a population in order to have good seeding in the initial
population quantification. It is shown in Table 3 using three
policies, with random permutations determining the priority
of the remaining chromosomes. Because their priorities are
invalid, randomly generated chromosomes are arranged
from left to right to ensure that priority constraints are not
broken. 'e first population creation process is depicted in
Algorithm 1.

rankb ti( 􏼁 � W ti( 􏼁 + max
tj ∈SUCC ti( )

C ti, tj􏼐 􏼑􏼐 + rankb tj􏼐 􏼑. (1)

In (1), W(ti) the average computational cost of task ti,
C(ti, tj) the amount of communication cost between tasks ti
and tj and rankb(tj) the upward rank is the sub-task ti.

Table 1: Symbols used in the proposed method.

Symbol Description
t i i th sub-task in a graph
p k K ih processor in the system
E Set of edges in a graph
T 'e following set of tasks in the graph
P Set of processors in the system
Tentry Sub-task input in a graph
Texit Sub-output task in a graph
Succ(ti) 'e set of delays below the task ti
Pred(ti) A set of sub-tasks ti
W(ti) 'e average computational cost below task ti
W(ti, Pk) Computational cost below task ti on the processor
C(ti, tj) 'e amount of communication cost between the tasks of ti and tj
rankb(ti) Upward rank of sub-task ti
rankt(ti) Downward ranking of sub-task ti
Rankb+ t(ti) Add a task to the sub-task ti in the rank
EST(ti, Pk) 'e earliest start time sub-task ti on a processor
EFT(ti, Pk) 'e earliest end time sub-task ti on a processor
AST(ti, Pk) Actual start time sub-task ti on a processor
AFT(ti, Pk) Actual end time sub-task ti on a processor
Avail {k} Idle time and availability of pk processor
Pop Population
PopSize Population size
ChSize Chromosome size

Table 2: An example of sub-task computational expenses on
processors.

Task P 0 P 1 P 2 ω
t 0 8 9 10 9
t 1 9 10 11 10
t 2 10 6 11 9
t 3 12 8 16 12
t 4 25 18 17 20
t 5 13 10 16 13
t 6 7 12 17 12
t 7 17 10 12 13
t 8 12 8 13 11
t 9 13 10 13 12

Table 3: An example of task priorities in a cloud environment.

Sub-task (ti) Rankb Rankt Rankb + t Level
T0 129 0 123 0
T1 81 24 105 1
T2 78 23 101 1
T3 100 17 117 1
T4 99 30 129 1
T5 60 50 110 2
T6 67 52 119 2
T7 35 75 110 3
T8 42 77 119 3
T9 12 107 119 4
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rankt ti( 􏼁 � max
tj∈SUCC ti( )

rankt tj􏼐 􏼑􏼐 + W tj􏼐 􏼑 + C ti, tj􏼐 􏼑. (2)

In (2), rankt(tj) is the downward rank is the sub-task ti.

Level ti( 􏼁 �

0, if ti � tentry;

max
tj∈pred tj( 􏼁

Level tj􏼐 􏼑 + 1􏼐 􏼑, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(3)

In equation (3), Level(tj) is the precedence sub-task of ti.

3.3. Assigning Sub-Tasks to Processors. Each chromosome in
the initial population must have a legitimate order of pre-
cedence, i.e., the precedence restrictions on the chromosome
must not be violated. 'e suggested approach for work
assignment processors has been subjected to the HEFT
processor allocation policy [10]. In this procedure, the sub-
task with the greatest priority is chosen from the chromo-
some’s sub-tasks and given to processors with the shortest
execution time compared to other processors. An insert-
based scheduling strategy is used in this processor allocation
approach.'is approach is discussed in the next section.'e
earliest start time is the ti task on the pk processor.
EST (ti, pk) is symbolized and obtained from

EST ti, pk( 􏼁 � max max
tj∈pred(ti)

AFT tj􏼐 􏼑 + C ti, tj􏼐 􏼑􏼐 􏼑􏼚 􏼛. (4)

'e moment when the actual task ti began running on
processor pk with AST (ti, pk) is symbolized and obtained
from

AST ti, pk( 􏼁 � max AST ti, pk( 􏼁( 􏼁, Avail pk( 􏼁), (5)

where Avail (pk) is the time when the pk processor is idle and
ready to execute tasks. Earliest finish time of sub-task ti on
processor pk with EFT (ti, pk) is symbolized and calculated
from

EFT ti, pk( 􏼁 � W ti, pk( 􏼁 + EST ti, pk( 􏼁, (6)

here, W (ti, pk) is defined as the amount of computing effort
required to complete task ti on processor pk which is actually
the real-time finish of sub-task ti on processor pk with
AFT (ti, pk).

It is shown and obtained from

AFT ti, pk( 􏼁 �
min
1≤ l≤pEFT ti, pl( 􏼁, (7)

which pk in the above equation is the fittest processor for the
sub-task ti. 'e pseudocode for assigning tasks to processors
is explained in Algorithm 2.

3.4. Fitness Function. 'e degree of fitness of chromosomes
is critical in determining which chromosomes to carry on to
the next generation. 'e real finish time of the final sub-task
in the directed graph is without rounds; or in other words,
the graph’s output node equals the program’s execution
time. (8) yields the execution time of the whole program,
which is the same as the appropriateness of chromosome i.

makespan i � max AFT texit( 􏼁􏼈 }. (8)

A low fitness signifies a short overall execution time. As a
result, the poorest and best chromosomes in the population
have the greatest and lowest fitness rates, respectively.

3.5. Crossover. Crossover is a key operator in GAs for
modifying population chromosomes [8]. In GAs, the
crossover operator also contributes to population evolution.
To create a new generation of chromosomes, the operator
unites more than one chromosome. Some qualities are
inherited from the first parent, while others are inherited
from the second parent. Algorithm 3 describes the crossover
operation in details.

'e single-point operator is simplified to a MapReduce
framework in Algorithm 4, with each combined action al-
located to a mapping.

3.6. Mutation. GA mutations are employed to preserve
population variability by altering chromosomes. Following
the use of the combination operator, several chromosomes
are modified using the mutation operator to prevent local
optimum convergence and to produce variety in the pop-
ulation. Two more genes are designated for mutation pro-
cedures. Algorithm 5 describes the suggested algorithm’s
mutation operation.

In Algorithm 6, mutation operators are condensed to
combine with the MapReduce architecture.

3.7. Selection. In the suggested approach, the technique of
picking a roulette wheel with random acceptance is utilized
to choose several chromosomes for the local search algo-
rithm (LSA) [16]. It has a temporal complexity of O in this
manner (1). 'is method consists of two major steps. In the
first step, a chromosome is selected at random from the
population. 'e probability (1/n) of selection is used. 'e
next step is to analyze the chromosome fitness value and to
find if the locally selected chromosome is one of the elites of
the population. Otherwise, the selected chromosome is not
accepted and the process is repeated. Algorithm 7 provides
the pseudocode for selecting a roulette wheel with random
acceptance.

3.8. Termination Conditions. 'e primary distinction be-
tween natural evolution and the issue in natural evolution
is that species in nature do not tend to end, but in order to
solve a problem within the stipulated budget, the process
must be halted [17]. 'ere are popular ways for testing the
termination condition of algorithms, such as limiting the
cost of fitness evaluation function or computer clock time,
or monitoring diversity and terminating it when pop-
ulation diversity diminishes [14]. 'e termination condi-
tion in the proposed method happens when all of the
chromosomes, or solutions, converge to the same degree of
fit.
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4. Simulation Results

'e suggested technique of the study, including job
scheduling cloud computing utilizing GA, is evaluated in
this paper using the Matlab software R2016b v9.1× .64 and
executed on a computer system with an Intel® CoreTM2 DuoE4500 processor and 2GB RAM.

'is study considers heterogeneous resources, which
vary in their capacity to execute various tasks, and executing
a job on different resources might result in varied execution
durations. In the equivalent graph, communication cost or
edge cost refers to the time spent transferring the outcome of
one job to another.

Two graphs, G1n×n for the communication cost between
tasks and G2n×m for the computing cost of each task, are
required to construct each random DAG, where n is the
number of tasks and m is the number of available resources.
'e computation cost is created at random between 5 and
20, while the communication cost is generated at random
between 1 and 10 every millisecond unit. In the experiments,

the following algorithm parameters are set. 'e starting
population size is 50, the maximum number of iterations is
120, the inertia weight is 0.7, and C1 and C2 are equal to 2.
'e test phase was divided into three phases, each with 50
graphs and no different activities (20, 40, 60).

In addition to the PSO and IWD algorithms, the results
of the proposed method are compared against the results of
the well-known WOA and MFO algorithms. 'e identical
method was utilized for all five of the abovementioned test
conditions.

Figures 2–4 depict graphs with 20 tasks, 50 graphs with
40 tasks, and 50 graphs with 60 tasks. All algorithms have the
same set of parameters. In addition, the maximum number
of iterations in each of the five algorithms is set at 120.

In these graphs, the number of iterations required for the
algorithm to reach the optimum solution is referred to as the
convergence step. When the number of tasks equals 20, the
PSO algorithm’s convergence step is changed in the interval
(63-81), the IWD algorithm’s in the interval (63-80), the
WOA algorithm’s in the interval (58-72), the MFO
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Figure 3: 'e convergence speed achieved from the methods’ implementation on 50 graphs with 40 tasks.
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Figure 2: 'e algorithms’ convergence speed is determined by running them on 50 graphs with 20 tasks.
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algorithm’s in the interval (72-82), and the GA algorithm’s
in the interval (53-63). Furthermore, MFO has had the
poorest average outcomes. 'e GA’s advantage is also evi-
dent in all iterations.

When the number of tasks reaches 40, the convergence
step in the PSO algorithm shifts to the interval (85-103), the
IWD method shifts to the interval (85-100), the WOA al-
gorithm shifts to the interval (85-100), the MFO algorithm
shifts to the interval (96-108) and the GA algorithm shifts to
the interval (77-97). Again, as seen in the graph, MFO has
produced the poorest outcomes in this circumstance. 'e
results of the algorithms in the second scenario are closer
than the results of the algorithms in the other two cases.
IWD and WOA outcomes are closely related, and in 16

instances, they are identical. 'e IWD algorithm produced
the best results in 21% of instances, the GA method in 72%,
and the WOA algorithm in 7% of cases.

Furthermore, when the number of tasks reaches 60, the
PSO algorithm’s convergence step shifts to (90-105), the
IWD algorithm shifts to (95-105), theWOAmethod shifts to
(81-101), the MFO algorithm shifts to (96-109), and the GA
algorithm shifts to (71-102). As the number of tasks rises,
WOA outcomes approach GA, and PSO results approach
IWD. MFO had the poorest average performance in the
third scenario, as in the previous situations. WOA per-
formed better in 26% of the instances, whereas GA per-
formed best in the remaining situations. Table 4 displays the
best, average, worst, and standard deviation of convergence
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Figure 4: 'e algorithms’ convergence speed is determined by running them on 50 graphs with 60 tasks.

Push sub-task to priority queue
while not empty (priority queue)
Pop ti (first sub-task) From priority queue

for each processor pkdo
insertion-based HEFT scheduling policy (AFT (ti, pk))
assign ti to the processor pk

end for
end while

Return makespan� AFT (texit)

ALGORITHM 2: Sub-task allocation to processors.

Applying three different heuristic ranking strategies on the first three of the chromosomes.
for i from 3 to PopSize-1 do
for j from 0 to ChSize- 1 do
produce at random a gene with the parameters j ∈ (0, ChSize − 1) that has not been
generated in previous genes.

In order to maintain a topological order that is reliable, transfer chromosome i from its
current position on the left to its new position on the right in the queue.

end for
end for

ALGORITHM 1: Creation of the initial population.
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Figure 5: Makespan results from running the algorithms on 50 graphs with 20 tasks.
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Figure 6: Makespan is determined by running the algorithms on 50 graphs with 40 tasks.
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Figure 7: Makespan results from running the algorithms on 50 graphs with 60 tasks.
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Input: Two parents from the existing population
Output: Two offspring
Select at random an appropriate crossing point i
Separate the chromosomes of the father and mother into left and right parts.
Create a new offspring, specifically a son
Transfer the father’s left chromosomal segment to the son’s left chromosome segment.
Copy genes from the mother’s chromosome that do not occur in the father’s left chromosome segment to the right
chromosome segment of the son.

Produce a new offspring, specifically a daughter
Transfer the mother’s left chromosomal segment to the daughter’s left chromosome segment.
Copy genes from the father’s chromosome that do not occur on the mother’s left chromosome to the daughter’s right
chromosome.

Return (Two selected offspring)

ALGORITHM 3: Crossover operation.

Input: Mappers
Output: New Mappers
For each Mapper do Algorithm 5 (A chromosome Ti that has been picked at random)
Execute the MapReduce task manager
Record the result as M blocks
Transfer the outcome to the shuffle step.
'e best person should be written to the global file in DFS if all individuals have been processed

successfully
Return (New Mappers)

ALGORITHM 4: Crossover mapper.

Input: A chromosome Ti that has been picked at random.
Output: A new chromosome is being created.

Line 1: from Succ (i) select the first successor Tj
In the interval [i+1, j-1] Choose a gene Tk randomly
for all Tl member Pred (k)
if l< i then
swapped (Ti,Tk) to create a new generation.
Return the new offspring

else
Go to Line 1

end if
end for

ALGORITHM 5: Mutation operation.

(1) Give each Reducer the result of Algorithm 6.
(2) Activate the MapReduce task manager.
(3) Begin the process of calculating.
(4) Incorporate the findings into M-sized blocks.
(5) Verify that the termination condition has been met.
(6) if all individuals are properly processed then Write (best individual, DFS).
(7) 'e result should be sent to the cluster.

ALGORITHM 6: Mutation reduce.
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speed values. Figures 5–7 illustrate the results of imple-
menting the proposedmethod and comparing algorithms on
50 graphs with a varying number of jobs. All algorithms have
the same set of parameters. In addition, the maximum
number of repeats in all three situations is 120. After 120
repetitions, the values of makespan are recorded and re-
ported in Table 4.

As illustrated in the diagram, the PSO and IWD out-
comes in the first scenario are quite near to each other. 'e
MFO algorithm had the poorest performance, whereas GA
had the highest performance in 86% of situations.

In the second scenario, PSO degrades the most and is
worse than MFO in 13 occurrences. Similar to the previous
example, GA had the greatest performance; however, it
performed lower than WOA on 10 occasions.

In the third scenario, the IWD outcomes of two GA and
WOA algorithms became closer and even outperformed
each other in five instances. However, GA continues to
outperform in 67% of situations. As illustrated in
Figures 5–7, the overall tendency is that as the number of
tasks rises, makespan increases, PSO performance declines,
and IWD performance improves. In addition, Table 5 dis-
plays the best, average, worst, and standard deviation out-
comes of makespan.

As demonstrated in this section, the GA algorithm
solved the problem better than the other four algorithms and
was able to compete with them. In the first and third

scenarios, the GA algorithm outperformed the compared
algorithms, and only in the second scenario did the WOA
algorithm outperform the GA algorithm by one unit. 'is
proves the GA algorithm’s stability and convergence.

5. Conclusion and Future Works

Scheduling is a critical topic in distributed computing
systems, and several scheduling techniques have been sug-
gested.'is research presents a parallel GA for static tasks in
cloud computing systems utilizing aMapReduce framework.
'is method was created by merging genetic algorithms with
the HEFT algorithm, which is used to allocate sub-tasks to
processors. 'e proposed method accomplishes task
scheduling in two stages: first, the GA was used in con-
junction with heuristic techniques to assign tasks to pro-
cessors, and then the GA was used in conjunction with the
MapReduce framework to assign jobs to processors. In our
experiments, we consider heterogeneous resources that
differ in their ability to execute various tasks, as well as
running a job on different resources with varying execution
durations. 'e results show that the proposed method
outperforms other algorithms such as PSO, WOA, MFO,
and IWD.

One disadvantage of this strategy is that the graphs’
computational and communication costs are chosen at

Input: A chromosome.
Output: A new chromosome
Generate R ∈ [0, PopSize − 1] a random number
if (make spanR/make spanmin) �� 1 then

returnchoromosomeR;
end if

while (founding one of the fitness solutions)

ALGORITHM 7: Stochastic acceptance for roulette wheel selection.

Table 4: 'e best, average, worst, and standard deviation of
convergence speed results.

Test scenario Algorithm Best Medium Worst Standard
deviation

First scenario

IWD 63 74 80 7.23
PSO 63 78 81 6.58
GA 53 57 63 4.08

WOA 58 68 72 6.21
MFO 72 80 82 4.76

Second
scenario

IWD 85 94 100 6.24
PSO 85 98 103 8.04
GA 70 88 97 11.61

WOA 85 94 100 6.24
MFO 96 104 108 5.16

'ird scenario

IWD 95 103 105 4.76
PSO 90 96 105 6.24
GA 71 84 102 11.90

WOA 81 99 101 10.64
MFO 96 104 109 5.44

Table 5: 'e best, average, worst, and standard deviation results of
makespan.

Test scenario Algorithm Best Medium Worst Standard
deviation

First scenario

IWD 280 296 301 9.86
PSO 280 298 303 10.78
GA 251 256 270 8.59

WOA 260 281 290 8.22
MFO 299 310 316 7.25

Second
scenario

IWD 282 302 306 8.96
PSO 299 309 316 7.04
GA 273 280 288 6.13
WOA 272 278 291 3.87
MFO 306 313 316 4.39

'ird scenario

IWD 282 296 300 8.40
PSO 300 312 316 7.30
GA 281 288 295 5.71

WOA 281 289 301 41.12
MFO 300 319 324 11.34

Bold numbers represent the best results achieved.
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random from a range. MapReduce, on the other hand, is
low-level programming that necessitates a significant
amount of code in order to obtain the mapping and re-
duction functions. As a result, future research on the pro-
posed technique could be based on real-world graphs like the
fast Fourier transform (FFT), molecular dynamics code, and
so on. In the mapping and communication stage segment of
Google’s MapReduce approach, there is a brief overlap.
Unfortunately, this overlap in MapReduce software, which
has a longer communication phase than the mapping phase,
does not affect reaction time. If it is possible to provide
solutions that can overlap the massive stages of commu-
nication and reduction in such software, the necessary time
of program execution may be reduced while simultaneously
maximizing the available resources.
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