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Abstract
Cloud infrastructures are suitable environments for processing large scientific workflows. Nowadays, new challenges are

emerging in the field of optimizing workflows such that it can meet user’s service quality requirements. The key to

workflow optimization is the scheduling of workflow tasks, which is a famous NP-hard problem. Although several methods

have been proposed based on the genetic algorithm for task scheduling in clouds, our proposed method is more efficient

than other proposed methods due to the use of new genetic operators as well as modified genetic operators and the use of

load balancing routine. Moreover, a solution obtained from a heuristic used as one of the initial population chromosomes

and an efficient routine also used for generating the rest of the primary population chromosomes. An adaptive fitness

function is used that takes into account both cost and makespan. The algorithm introduced in this paper utilizes a load

balancing routine to maximize resources’ efficiency at execution time. The performance of the proposed algorithm is

evaluated by comparing the results with state of the art algorithms of this field, and the results indicate that the proposed

algorithm has remarkable superiority in comparison to other algorithms and performs task scheduling with the least

makespan and cost.
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1 Introduction

Nowadays scientific community is confronted with new

challenges in terms of experiments and simulations of big

data. The heterogeneity of the scientific applications and

the execution platforms have added these challenges in the

management of large-scale data [1]. These scientific

workflows that include big data require computations and

environments for high-performance processing. Cloud

computing is an example of distributed computing that is

suitable for the efficient handling of big data, as well as

dynamic and distributed services through the Internet [2].

Types of services provided by cloud computing include

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), Software as a Service (SaaS) [3].

Cloud computing delivers dynamic and high scalability

resources to users in the same form as water and electricity

provided to households these days. Workflow scheduling in

the cloud system is the mapping of tasks to computational

resources for execution such that the priorities of the tasks

execution are maintained [4]. There are two phases in the

workflow scheduling in the cloud computing environment.

The first phase is mapping the tasks to the resources, and

the second phase is the execution of tasks in a single

resource [5]. In this paper, task scheduling is performed

using an intelligent algorithm. Optimization objectives for

workflow scheduling in the cloud computing environment

are including makespan, cost, throughput, and load

balancing.

The deadline is the time constraint defined by the users

for workflow execution. The deadline constrained

scheduling problem is to map every task Ti onto a suit-

able processor Pi to minimize the execution cost of the

workflow and complete it within the deadline. Therefore,
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this paper aims to find the optimal mapping between each

workflow task and the available cloud resources such that

makespan and financial costs are reduced simultaneously.

Moreover, the deadline is also met.

Recently, many algorithms for task scheduling in the

cloud environment have been introduced. Yuan et al. pro-

posed the Green Cloud Data Centers (GCDCs) [6]. In this

multi-objective approach, the authors used spatial differ-

ences and decomposition to establish an efficient tradeoff

between cost and time to process all tasks. However, the

initial population is randomly generated in this method. It

also does not take into account the balanced workload

distribution between processors. Simultaneously, in our

proposed algorithm, besides high simplicity and flexibility,

new and modified operators have been used in the genetic

algorithm, which significantly reduces the time to converge

to the optimal solution. Moreover, the load distribution

routine is also used to increase the performance of the

processors.

As such, the algorithm introduced in [7] for task

scheduling in cloud computing environment used a random

population that significantly reduces the convergence speed

of the algorithm. Therefore, we decided to design an

algorithm that would have a higher speed to achieve the

optimal solution. In this paper, the convergence rate of the

genetic algorithm has been improved through using a well-

known heuristic, and the initial population is generated by

portioning workflow tasks and property of critical path, and

an acceptable solution is obtained at a reasonable time.

The rest of the paper is organized as follows. Section 2

introduces the background and summarizes the related

work, and Sect. 3 describes the task scheduling model. The

proposed algorithm is described in Sect. 4. Section 5 pre-

sents the performance analysis and discussion. The paper

concluded in Sect. 6.

2 Background

In the case of Quality-of-Service (QoS) constraint

scheduling, most of the available algorithms will improve

one of the QoS parameters. These two parameters are the

user-defined deadline and financial constraint. Liu et al.

introduced a genetic algorithm that uses an adaptive cost

function to satisfy constraints [8]. This algorithm also uses

a co-evolutionary method to adjust the rate of crossover

and mutation, which increases the rate of convergence.

Wang et al. used a predictive genetic algorithm to predict

future resources and reduce the makespan [9]. Liu et al.

introduced a Multiple-Priority Queues Genetic Algorithm

(MPQGA) [10], which uses multiple queues for sorting the

tasks, and implements a genetic algorithm according to a

list of task priorities. The initial population consists of

multiple queues of the tasks, and the tasks are mapped to

processors based on their lowest finish time. Algorithms

such as particle swarm optimization (PSO) [11], ant colony

optimization (ACO) [12], artificial bee colony algorithm

(ABC) [13], and genetic algorithm (GA) [7] [16, 17] are

practical algorithms for different scheduling problems.

These algorithms require sufficient samples of the candi-

date solutions in the search space. However, the most

significant drawback of basic genetic algorithms is evident

when the search space is largely due to the high compu-

tational cost required.

Existing task scheduling can be divided into two general

categories: (1) methods that strive to optimize energy

consumption. (2) methods focusing on optimizing work-

load processing and improving service quality parameters.

2.1 Energy optimization techniques

Wang et al. introduced a task scheduling framework that

considered deadline, data localization, and resource effi-

ciency enhancements to reduce energy consumption in a

heterogeneous cloud [14]. The proposed framework

includes three sections on creating lists of tasks, tasks

scheduling, and updating slot lists. In terms of deadline

constraints, the number of slots allocated to the jobs, the

possible processing times of the jobs, and a new logical

sequence of tasks has been proposed. Tasks are assigned to

high-quality slots from local servers, clustered servers, and

remote servers promptly to improve data locality. Avail-

able clusters have been proposed that find not only the

available slots but also enhance the efficiency of server

resources using fuzzy logic.

Sun et al. proposed an efficient task scheduling for the

fog-cloud environment [15]. The authors consider the

mobility of cloud nodes as the most influential factor in the

scheduling of tasks. The authors modeled the distribution

of resources among clusters in order to maximize resource

efficiency and the number of tasks that can be performed in

the cloud environment. However, this approach did not

consider communication-based tasks.

Tang et al. introduced the efficient energy scheduling

algorithm in the cloud environment [16]. This algorithm

reduces the idle time of the processors (employs inefficient

processors.) Their proposed algorithm first performs initial

scheduling by randomly assigning tasks to the processors

and then calculates the overall makespan and deadline

based on the HEFT heuristic.

There are lots of works done on Virtual Machine (VM)

or task scheduling, VM placement, and resource allocation

in the cloud environment. Yadav et al. introduced an

energy-based scheduling algorithm in a cloud computing

environment that selects VMs according to the Service-

Level Agreement (SLA) to prevent hosts from overloading
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[17]. The authors used three adaptive and consistent

models to minimize energy consumption and SLA viola-

tions. This method uses the overloaded host identification

algorithm and the VM selection of the overloaded host to

increase efficiency and reduce energy consumption.

Yadav et al. also introduced an energy-aware scheduling

algorithm to reduce energy at a cloud data center [18]. This

algorithm identifies overloaded hosts and selects VMs to

combine VM in under-loaded hosts. After all, resources

have been allocated to all VM; underload hosts should be

in energy storage mode to reduce energy consumption.

Moreover, the authors used a regression-based algorithm to

determine the threshold of CPU performance to identify

overloaded hosts. All in all, our proposed VM consolida-

tion algorithm is based on the study of li [19].

2.2 Workload processing optimization
techniques

Garg et al. introduced a scheduling algorithm in the cloud

environment that simultaneously increases reliability and

reduces energy consumption [20]. The algorithm consists

of four levels; the first level is a topology ordered by

workflow tasks. At the second level, it used a heuristic for

task clustering to reduce the cost of communication

between tasks. In the third level, user-defined QoS con-

straints are applied, and in the last step, the tasks are

assigned to the appropriate processors according to their

required voltage levels. However, due to its heuristic nat-

ure, the performance of this algorithm is significantly

reduced in heterogeneous cloud systems with large work-

flows and is unable to provide the fully guaranteed QoS

parameters required by users. Specifically, our algorithm,

due to the combination of advanced genetic algorithm and

a robust heuristic optimizes the two most critical perfor-

mance parameters, which means time and cost.

Arabnejad et al. proposed a scheduling algorithm, Pro-

portional Deadline Constrained (PDC), that solved the

problem of scientific workflow scheduling in the cloud

environment [21]. The primary purpose of PDC is to

optimize makespan by considering the deadline constraint.

PDC consists of multiple phases: the first phase is the

leveling of the workflow. The second phase is the pro-

portional deadline distribution to the levels. The third

phase is the selection of the best instance based on the least

time and cost. However, this algorithm is heuristic-based

and does not consider the load balancing of processors.

Keshanchi et al. introduced the N-GA algorithm for

static task scheduling in a cloud computing environment

[22]. The proposed algorithm combines the benefits of the

classic genetic algorithm and the HEFT heuristic. How-

ever, in this algorithm, the initial population is also gen-

erated randomly. Moreover, this method does not consider

the Deadline constraint, and only the makespan parameter

is considered, and other QoS parameters, including cost,

are not considered.

Ghobaei et al. introduced the Task Scheduling algorithm

based on Moth-Flame Optimization (TS-MFO) [23]. In TS-

MFO, a set of optimal tasks are assigned to FOG nodes so

that the optimal makespan is required to perform these

tasks efficiently. In this algorithm, the initial population is

optimized using a method based on the MFO that considers

moths’ behavior at night around the flame to assign tasks to

FOG nodes to reduce the average time of task execution.

However, TS-MFO considers only the makespan parame-

ter; therefore, the cost parameter is not significant in this

method.

Li et al. introduced a PSO-based scheduling algorithm

for interdependent tasks in a local grid network [11]. First,

a scheduling model of the computational grid is created,

then the particle swarm algorithm is changed in continuous

space searching to the integer space searching. Selects the

appropriate inertial weight value and improves the algo-

rithm’s search capacity. kimpan et al. introduced a load-

balanced distribution between VMs in the cloud computing

environment [13]. The hybridization of ABC with robust

heuristic has been used to reduce makespan. Also, in this

method, tasks are considered randomly divided into two

categories without considering the types of data

distribution.

Basu et al. introduced an intelligent model for task

scheduling of IoT applications, named the Genetic Algo-

rithm Ant Colony Optimization (GAACO). GAACO is

implemented by combining the Genetic Algorithm (GA)

and Ant Colony Optimization algorithm (ACO) [12].

Specifically, GAACO speeds up the convergence of the

algorithm to solve task scheduling problems. However, the

major disadvantage of this model is complex and signifi-

cant space problems because the algorithm is stuck at the

local optima. However, DCHG-TS also works in compli-

cated and broad problems due to the use of modified

operators and new addition operators to the basic genetic

algorithm.

Mortazavi-Dehkordi et al. introduced an efficient

scheduling framework that considered the deadline limit

defined in Big Data applications of the public cloud envi-

ronment [24]. This scheduling model considers the cost of

increasing the public cloud’s efficiency, limiting the

deadline meeting, and reducing the delay for workflows

processing. This algorithm uses two procedures, one is

partitioning, and the other is replication.

Kaur et al. introduced the multi-objective scheduling

method, named the Predict Genetic Algorithm (PGA) [25].

In this method, the classical genetic algorithm was com-

bined with robust Predict Earliest Finish Time (PEFT)

heuristic. PGA used the solution of PEFT as one
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chromosome of the initial population to increase the con-

vergence rate. However, the authors used the classic

genetic algorithm without increasing efficiency. Moreover,

the machines’ performance during operation has not been

taken into account.

A recently proposed GA, a Cost optimization of

Workflow Task Scheduling based on the Genetic Algo-

rithm (CWTS-GA) [7], considers the dynamic elastic

characteristics of the cloud resources provisions. Still, a

disadvantage is that it takes a long time to converge into an

optimal solution due to the use of the near-random initial

population. In this algorithm, priority is assigned to each

task by the up-bottom partitioning method and uses two

dimensions encoding method to schedule the tasks. More-

over, the authors designed the fitness function in such a

way that it takes into account both cost and scheduling

length. In summary, we use two-fold genetic operators

(mutation and crossover). The experimental results show

the superiority of our algorithm over CWTS-GA and state

of the art algorithms in terms of the performance and also,

using the load balancing routine is another advantage of

our proposed algorithm at runtime.

3 Scheduling model

In this section, the heterogeneous model, applications, and

used system are described.

3.1 System model

In this paper, cloud resources are defined as heterogeneous

processors that are fully connected through a high-speed

network, as shown in Fig. 1. A set of tasks in the Directed

Acyclic Graph (DAG) can be executed on a single pro-

cessor at any time. If dependent tasks are scheduled on two

different processors, the communication time between two

dependent tasks should be considered. Table 1 represents a

list of notations and definitions used in this paper.

3.2 Application model

In this paper, the workflow application is depicted as a

DAG. In this graph, vertices represent the tasks, and the

edges between the vertices represent the execution priority

of the tasks, which means that (ti, tj) describes that task tj
does not process unless processing of task ti is complete. In

this case, the task ti is called the parent task of tj, and the

task tj is called the child task of ti. A set of input and output

tasks is considered in the DAG of this paper. Any task

without a parent is called as the entry task tentry, and a task

with no child task is called the exit task texit [26]. Figure 2

shows a DAG that is generated randomly. In the workflow

graph considered in this paper, it is assumed that when the

processing of each task is completed, its output is guided to

the next task. Due to the Depth First Search (DFS) forest,

corresponding to the directional graph of Fig. 2 has no back

edge, so this graph is definitely without a cycle.

As shown in Fig. 2, the DAG of application has two

entry tasks t0, t1, and four exit tasks t12, t13, t14, and t15.

3.3 Task leveling

Eq. (1) calculates the down� top rank of each of the tasks,

and descending order of the corresponding down� top

rank values generates a priority list of tasks.

Rankdown�top tið Þ ¼ wti þ maxtj2SUCC tið Þðc ti; tj
� �

þ Rankdown�top tið ÞÞ ð1Þ

Where w(ti) is the amount of time required to process

the task on the execution node,c ti; tj
� �

is the cost of data

transferring from a parent node ti to a child node tj in a

workflow, and SUCC tið Þ is the set of all successor tasks

that are immediately after ti. The Rankdown�top is obtained

recursively by traversing the application DAG upward,

starting from the exit task [27].

The whole scheduling is affected by a critical path.

Specifically, a path from the entry node to the exit node

with the highest costs of edges and vertices is called the

critical path. Eq. (2) calculates the Level of the Task (LT).

LT ¼ Rankdown�top tið Þ
þ maxtj2pred tið Þ Wj

�
þC

�
ti; tj
� �

þ Rankdown�top tið Þ
� �

ð2Þ

In this paper, significant contributions are made as

follows:

• We develop a partitioning routine to divide the

workflow into several distinct partitions. In this routine,

at each partition, tasks can be processed independently

of each other and simultaneously on different machines.

We have used this simple and efficient routine to

produce a variety of chromosomes, which results in

faster convergence to the optimal solution as the

population is not randomly generated.
Fig. 1 A fully connected parallel system with 3 processors
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• We use the solution of Heterogeneous Earliest Finish

Time (HEFT) heuristic in the initial population of

Deadline-aware and Cost-effective Hybrid Genetic

Task Scheduling (DCHG-TS). This efficient and robust

heuristic has low time complexity and makes the initial

population of DCHG-TS more efficient, and thus the

algorithm converges efficiently in less time.

• We develop new and modified operators (inversion,

improved crossover, and mutation) to enable DCHG-TS

to explore large problem space in less time and to

provide efficient solutions.

• Another advantage that our proposed algorithm has

over other task scheduling algorithms is at execution

time; a load balancing routine is used to improve the

efficiency of the resources, so the resources are not

overloaded or stayed idle for a long time. This routine

distributes the load equally across all resources, which

results in efficient scheduling and less makespan,

especially in large cloud systems.

4 The proposed algorithm

4.1 Chromosome representation

The population consists of several individuals called

chromosomes. Each of the chromosomes consists of two

parts. The first gene in each chromosome represents the

host processor, and the following genes will determine the

order of scheduled tasks on that processor. The priority

constraints among tasks should not be violated; otherwise,

the chromosome will become an invalid chromosome.

Each chromosome represents the order of the tasks that are

scheduled on a processor. An example of the chromosome

used in this paper is shown in Fig. 3.

4.2 Initial population

In CWTS-GA, except for one chromosome, the rest of the

chromosomes are randomly generated, which leads to

search large problem spaces inefficiently. Thus, in DCHG-

TS, the initial population is generated, so optimal solutions

Table 1 Notations used in

DCHG-TS
Notation Definition

Pi The th processor in the system

Ti The th task in the DAG of workflow

Tentry The entry task with no predecessor in the workflow

Texit The exit task with no successor in the workflow

DAG The directed acyclic graph

w(ti) The task weight, representing the execution time of ti

(cti,tj) The cost of data transferring between ti and tj

SUCC(ti) The set successor tasks after ti

LT The level of task

NP The size of the population

k1 The deadline factor for the multi-objective fitness function

k2 The cost factor for the multi-objective fitness function

Pm The probability of mutation

Slength The scheduling length for the corresponding chromosome

ECT The expected completion time

ECC The expected completion cost

Fig. 2 A simple DAG containing 15 tasks
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are obtained at an acceptable time.

Algorithm 1: initial population routine
Input: a DAG of workflow, NP popula�on size
Output: the ini�al popula�on
1: for i=1 to Np-1 do
2:    foreach par��on in DAG
3:       foreach task in level
4:            calculate LT for each task;
5:     sort tasks based on descending order of LT and insert them in T-queue;
6:            pickup task from T-queue and assign it to the fastest available processor;
7:       endfor
8:     endfor
9: endfor

Algorithm 1 uses the partition function to divide the

workflow into several independent partitions (Fig. 7). Each

partition should be such that it covers the independent tasks

that can be performed on different processors. This oper-

ation is used to assign tasks to different processors to create

high diversity in chromosomes. In steps 1 to 3, each task of

DAG of the workflow selects. Then calculates the value of

LT using Eq. (2) for each task (Step 4) and in a task queue

(T-queue), the tasks are placed by considering LT in

descending order (step 5). A task with a higher LT value

exists in a critical path for processing, so from the begin-

ning of the T-queue, each of the tasks is removed and

assigned to the available fastest processor (Step 6). Finally,

the initial efficient population is generated.

4.3 Fitness calculation

The fitness function plays an essential role in the genetic

algorithm. If the defined constraints are stringent, then the

purpose of this function becomes more perceptible. In this

paper, the fitness function after calculating the penalty is

defined as Eq. (3).

Fitness Xið Þ ¼ C=M Xið Þ ð3Þ

Where M(Xi) is defined as Eq. (4).

M Xið Þ ¼ k1
T Xið Þ

dead time
þ k2

C Xið Þ
Max cost

ð4Þ

Where is the time of completion of the scheduling

scheme provided by the chromosome Xi, is the user-defined

deadline, C Xið Þ represents the total cost of fully imple-

menting the scheduling provided by the chromosome ,

Max cost is the maximum cost defined by the user, k1 and
k2 denote the user-defined QoS parameters, which specifies

the deadline and cost priority, respectively,0 B k1 B 1 and

0 B k2 B 1 are such that k1 ? k2 = 1. k1 - k2 = 0 rep-

resents that both QOS parameters for the user are the same

preference, k1 - k2[ 0 indicates that the deadline

parameter is more critical to the user, k1 - k2\ 0 indi-

cates that the fitness function emphasizes choosing less

costly chromosomes.

The evaluation process is such that if
T Xið Þ

dead time
[ 1 or

C Xið Þ
Max cost

[1, then this chromosome is infeasible and should

be removed from the population; otherwise, the chromo-

some is feasible and maintained.

4.4 Crossover operator

The selection of the elite chromosomes in this paper is

performed through the roulette wheel method [10][28, 29],

which is an ideal option to implement the selection oper-

ation in the genetic algorithm and then, the multi-fold and

modified crossover operator have been used for the selec-

ted chromosomes. The crossover operator used in this

paper is nearly twice as efficient as other existing crossover

operators used in task scheduling algorithms. In single-

point crossover mode, a point of the chromosome selected

randomly, but in double-point crossover mode, two points

of the chromosome are chosen randomly. Meanwhile, in

triple crossover mode, three points of the chromosome are

selected randomly.

The details of the crossover operation are shown in

Fig. 4. Two father’s and mother’s chromosomes are shown

in Fig. 4a, and after the crossover operator is performed, in

Fig. 4b, two new chromosomes are produced son = {{(p1,

t1, t8, t7, t10, t15), (p2, t2, t3, t12, t9, t11), (p3, t4, t5, t6, t13,

t14)}} and daughter = {{(p1, t2, t5, t6, t9, t11), (p2, t4, t3, t7,

t13, t14), (p3, t1, t8, t12, t10, t15)}}.

Fig. 3 An example of the chromosome
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The details of the crossover operation are given in

Algorithm 2.

Algorithm 2: Crossover routine
Input: two points from the current popula�on
Output: two new chromosomes
Data: Number of crossover (Nc = Ns/2)
1: for k=1 to Nc

2:    Randomly select a father’s chromosome and mother’s chromosome from the current popula�on;
3:    Generate two chromosomes Xc and Xd by single-point crossover;
4:    Generate two chromosomes Xe and Xf by double-point crossover;
5:    Generate two chromosomes Xg and Xh by triple-point crossover;
6:    Calculate the fitness values of Xc, Xd, Xe, Xf, Xg, and Xh;
7:    Select two chromosomes with the highest fitness values as Ns from the chromosomes calculated in step 6;
8: end for

Algorithm 2 presents the advanced crossover routine

compared to the existing genetic algorithms. In step 1, the

number of repetitions of the operation is equal to (Nc = )

(where is the selected population). In step 2, two random

chromosomes are selected from the population as parental

chromosomes (Xa and Xb). Xc and Xd chromosomes are

produced by the single-point crossover operator in step 3.

In particular, the other two chromosomes Xe and Xf are

produced by the double-point crossover operator on the

same parent chromosomes (Xa and Xb) in step 4. Two

chromosomes Xg and Xh, are obtained from the triple-point

crossover operator on parent chromosomes (Xa and Xb) in

step 5. In step 6, using Eq. (3) the fitness of these chro-

mosomes is evaluated. In step 7, the best two chromosomes

with the highest fitness values are selected and added to the

population (NS).

4.5 Mutation operator

In the proposed algorithm, two modes have been used in

the mutation operator, including the inner mutation and the

outer mutation. It should be noted that in both operating

modes, the combination of single-point mutation and

double-point mutation is used, which, unlike other genetic

algorithms introduced in this field, increases the algo-

rithm’s efficiency. In single-point mode, two tasks are

selected randomly, and the order of their execution is

exchanged within a processor. Then the fitness values of

the obtained chromosomes are compared to each other, and

the chromosome with a higher amount of fitness is selected.

In mutation operation with double-point mode, two tasks

are selected randomly and assigned to two selected pro-

cessors randomly, such that these processors have the

capabilities to process these tasks. Choosing external or

internal operations is random, and according to the prob-

ability of mutation pm, a random number is generated

between 0 and 1. If this number is smaller than pm, the

inner operation is selected, and otherwise, the outer oper-

ation is selected for the mutation operator.

The operation of the inner mutation and the outer

mutation is shown in Figs. 5, and 6, respectively.

Fig. 4 a Example of parent

chromosomes. b Example of

two-point crossover

Cluster Computing

123



Algorithm 3: Mutation routine
Input: one chromosome from the current population
Output: new generated chromosome 
Data: number of mutations n = Pm × Ns

1: for i=1 to n do 
2:     randomly generate a number R between 0 and 1;
3:     if (R < Pm) {
4:                randomly select a chromosome Xi from the current population;
5:                perform inner mutation with single-point mode offspring = Xj;
6:                perform inner mutation with double-point mode offspring = Xk;
7:         compute fitness of Xj and Xk;
8:                select offspring with better fitness value as Ns;}
9:     else {
10:             randomly select a chromosome Xl from the current population;
11:             perform outer mutation with single-point mode offspring = Xm;
12:             perform outer mutation with double-point mode offspring = Xn;
13:             compute fitness of Xm and Xn;
14:             select offspring with better fitness as Ns;}
15: end for

The presence of two inner and outer operators for

mutation operation has led to an increase in algorithm

efficiency. In step 1 of algorithm 3, the algorithm is

repeated for the number of mutations (n = Pm 9 Ns) where

Pm is the probability of mutation. In step 2, the number R is

randomly generated between 0 and 1. If (R \ Pm), then

both the single-point and double-point inner mutations are

performed, and then the best chromosomes are selected

using Eq. (3) and added to the population (steps 4 to 8).

Else if (Pm \ R), then outer mutation operations will be

performed as both single-point and double-point proce-

dures (Fig. 6), and finally, the superior chromosomes will

be added to the population in terms of their fitness (Steps

10 to 14).

4.6 Inversion operator

The proposed algorithm uses a partition routine such that

the tasks of each partition can be executed independently.

An example of a workflow application and the corre-

sponding partition is shown in Fig. 7.

An additional function of DCHG-TS compared to the

recent task scheduler based on genetic algorithms is an

inversion operator. The two-mode inversion operator has

been used in this paper that consists of the exchange and

the replace mode. This operator exchanges the order of

tasks of the same partition, in which these tasks can be

executed independently. The details of this operator are

shown in Fig. 8.

4.7 Algorithm termination

The algorithm is executed until the termination condition is

satisfied. The number of generations in the proposed

algorithm is taken as 100.

4.8 Load balancing operator

DCHG-TS optimizes the load balancing during the exe-

cution time such that processors completed the task effi-

ciently, did not stay idle or overloaded for a long time.

Min Pt ¼ minimum pt1; . . .:; ptnf g ð5Þ

Load w ¼ Slength � Min Pt ð6Þ

The load balancing routine of the proposed algorithm

predicts the available resources and calculates the differ-

ence between the execution time of each chromosome and

the lowest finish time of each processor. Eq. (5) calculates

minimum processing time for processors. In Eq. (5), pti is

the processing finish time of the processor i. Eq. (6) cal-

culates the value of Load_w using the difference between

Slength and Min_Pt, Where Min_Pt is minimum finish time

Fig. 5 Example of inner mutation with double-point mode

Fig. 6 Example of outer mutation with double-point mode
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of processors, and Slength is The scheduling length for the

corresponding chromosome. The high values for Load_w

are not optimal; hence, half of the chromosomes with

higher values of Load_w are selected and put in a queue

according to their value of Load_w in not decreasing order.

The worst chromosomes are picked up from the queue, and

the overloaded processor is identified, then the task of the

overloaded processor is assigned to another random pro-

cessor that is capable of processing this task. In the end, the

fitness of the new chromosome is calculated. If the new

chromosome’s fitness is better than the previous chromo-

some, then the new chromosome is replaced by the earlier

chromosome.

4.9 DCHG-TS algorithm flow

Step 1: Determine the initial values for the Crossover and

Mutation probability, the Elitism rate, the Population size,

the number of processors, the execution time matrix ECT,

and the execution cost matrix ECC.

Step 2: Call HEFT algorithm and seed HEFT solution as

a chromosome in the initial population.

Step 3: Call the partitioning routine and assign tasks on

the critical path of the DAG to the fastest processors to

generate the remaining chromosomes of the initial

population.

Fig. 7 An example of workflow

DAG and corresponding

partitions

Fig. 8 Inversion operations:

a Exchange b Replace

Algorithm 4: load balancing routine

1: calculate the amount of load_w for all the schedulers;
2: select the chromosomes whose load_w values have the most difference with the load_w threshold;
3: for the selected chromosomes, do the following steps
4:      identify the processor that has been overloaded and assign its tasks to a processor that is capable of performing those tasks;
5:        if (fitness (new chromosome) > fitness (current chromosome))

6:                   replace new chromosome 
7: end if
8: end for
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Step 4: Until the termination condition is not satisfied,

the following steps should be executed unless the termi-

nation condition is met, then the operation stops.

Step 5: compute the fitness value of each chromosome in

the evaluation stage.

Step 6: Considering S = Elitism rate 9 Population size,

select the chromosomes with the highest fitness values.

Step 7: Call the multi-fold crossover routine, create new

chromosomes, and add to the selected population.

Step 8: The number of mutation operations is equal to

the mutation rate 9 The number of selected chromosomes,

and by performing mutation operations on the selected

chromosomes, new chromosomes will be created and

added to the selected population.

Step 9: For all chromosomes, for each partition in each

chromosome, task inversion operation is done.

Step 10: Call load balancing routine.

Step 11: Return step 5 until genetic operation stops.

5 Simulation and performance analysis

The efficiency of DCHG-TS has been compared to several

the state of the art algorithms by simulation experiments in

the CloudSim environment. Both real-world workflows and

synthesized workflows have been used to evaluate the

proposed algorithm.

5.1 Experimental settings

After the number of simulations, the most suitable param-

eters for the proposed algorithm that provide the best

results with the mutation and crossover rates of 0.01 and

0.8, respectively. The population size and the number of

generations for random workflows are taken as 100 to

simplify the simulations. The chosen metric for perfor-

mance evaluation is Normalized Scheduling Cost (NSC),

which is achieved by dividing the total cost of the

scheduling and the cost of executing a workflow on the

cheapest processor. Another parameter used to evaluate

performance is the Communication to Computation Rate

(CCR) [27]. The state of the art algorithms GAACO, PGA,

and CWTS-GA are used to evaluate the efficiency

ofDCHG-TS.

The data transfer times and information of the task

processing times are presented in Fig. 2; Table 2, respec-

tively, when the processors operate at their maximum

frequency. In experiments, pricing calculations are based

on the study of Zheng [30].

Our proposed algorithms and experimental simulations

are implemented by java (JDK 8). The settings for gener-

ating 100 random DAGs and the input parameters for

proposed task scheduling algorithms are shown in Table 3.

As the computation of workflows increases, the advantages

of DCHG-TS become more apparent. Due to scheduling

algorithms should be highly efficient against complex and

large workflows with high complexity. Therefore, in

experiments, workflows with a large number of nodes also

have been used as inputs, as shown in Table 4. In Fig. 9,

k1is the deadline factor, and the horizontal axis shows the

settings for k1, and since k1 ? k2 = 1, so k2 will also be set.

5.2 Performance evaluation

In this section, the performance of DCHG-TS is evaluated.

As can be seen in Fig. 9, as factor k1 increases, the nor-

malized scheduling cost for all three methods decreases.

Compared to the other two methods, DCHG-TS has a

lower reduction rate of NSC due to the other two methods

do not consider the cost factor in the schedule and also, by

increasing the amount of k1, DCHG-TS gives higher pri-

ority to the cost.

Sets of workflow 5 k, 10 k, and 15 k are generated

randomly with different CCR, and the simulation experi-

ments results are obtained with distinct CCR. As such, one

of the performance parameters we have used to evaluate

the efficiency of DCHG-TS compared to other algorithms

in experiments is Average Schedule Length (ASL), which

is obtained by 1000 runs of the algorithm. The results are

Table 2 An example of task execution times with the highest CPU

frequency

Tasks Processor 1 Processor 2 Processor 3

Task 1 60 24 32

Task 2 54 42 144

Task 3 8 72 12

Task 4 42 12 40

Task 5 40 32 162

Task 6 56 12 96

Task 7 70 28 14

Task 8 10 56 60

Task 9 42 6 72

Task 10 56 4 128

Task 11 30 12 16

Task 12 27 21 72

Task 13 4 36 6

Task 14 21 6 20

Task 15 20 16 81
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shown in Fig. 10. DCHG-TS has a significant advantage

over GAACO, PGA, and CWTS-GA for the CCR values of

0.1, 1, and 10. Various random workflows with computa-

tional and communication characteristics have been

investigated to analyze the efficiency of DCHG-TS from

the ASL perspective. In terms of ASL, DCHG-TS is better

than GAACO, PGA, and CWTS-GA by almost

25.77%,19.69%, and 13.58%, respectively. Figure 10

shows that DCHG-TS continues to perform better than

other algorithms with the increasing number of workflow

nodes. GAACO has more unsatisfactory results than other

algorithms because it uses a random initial population,

while DCHG-TS uses an efficient initial population. As is

evident, as the number of nodes increases, the ASL rate

also increases for all algorithms.

Also, in this paper, the real-world workflow LIGO’s

Inspiral [31] is used to evaluate the performance of the

proposed algorithm. The Laser Interferometer Gravita-

tional-wave Observatory (LIGO) is trying to detect gravi-

tational waves generated by various events in the universe,

according to Einstein’s general ratio. LIGO’s inspiral

workflow is used to analyze data from the correlation of

compact binary systems such as binary neutron stars and

black holes. The time-frequency data is divided into

smaller blocks by all LIGO detectors for analysis. For each

block, the workflow generates a subset of the waveforms

that belong to the parameter space and calculates the output

of the matched filter. If a real Inspiral is discovered, a

trigger will be created that can be checked with the triggers

of other detectors.

Meanwhile, several additional compatibility tests may

also be added to the workflow. The Inspiral workflow is

data-driven and presented as a DAX XML format. Here,

we introduce the Inspiral workflow with 1000 nodes as the

real-world input workflow to evaluate the performance of

DCHG-TS compared to other algorithms.

In Fig. 11, the performance comparison of the proposed

algorithm with the other three algorithms for increasing the

number of processors can be seen. The number of pro-

cessors is considered to be from 2 to 10, so that one unit is

increased in each experiment. The GAACO, PGA, DCHG-

TS, and CWTS-GA algorithms are implemented with

1000-node Inspiral workflow according to the number of

processors allocated. The performance parameter measured

in these experiments is makespan, and the number of

processors is an adjustable parameter. As shown in Fig. 11,

the algorithms’ efficiency improves with an increasing

number of processors due to increased processing paral-

lelism. However, due to the serial nature of the Inspiral

workflow, as well as the amount of overhead is imposed on

the system by increasing the number of processors, effi-

ciency improvement is limited to a certain number of

processors. The superiority of our proposed algorithm is

using the efficient initial population, and also the load

balancing routine to increase the efficiency of the proces-

sors in the runtime. However, in other algorithms, the

Table 3 Random DAG production parameters for input different workflow scheduling algorithms

DAG Type Number of

DAGs

CCR Number of

processors

Mutation

rate

Crossover

rate

Population

size

Number of

generations

Random 100 0.1,0.5,1.0,2.0,

5.0,10

3 [0.01 1] [0.01 1] 100 100

Table 4 Inspiral DAG production parameters for evaluating workflow scheduling algorithms

DAG Type Number of DAGs CCR Number of processors Mutation rate Crossover rate Population size Number of generations

Inspiral 1000 1 [2 35] [0.01 1] [0.01 1] 1000 1000

0
1
2
3
4
5
6
7
8
9

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

N
SC

Deadline factor

GAACO CWTS-GA PGA DCHG-TS

Fig. 9 Normalized scheduling cost with increasing deadline factor
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initial population is generated randomly, and moreover, an

efficient load balancing routine is not considered.

In Fig. 11, when the minimum number of processors

(e.g., the number of processors is 2), in terms of average

performance, our proposed algorithm is outperformed

CWTS-GA, PGA, and GAACO by almost 4%, 5%, and

6%, respectively. However, as the number of processors

increases, the rate of efficiency increases dramatically.

When the number of processors is equal to 6, experimental

results show that DCHG-TS effectively improves average

performance by at least 13%, 17%, and 28% compared to

CWTS-GA, PGA, and GAACO, respectively. In the case

of the maximum number of processors, when the number

of processors is equal to 10, DCHG-TS improves the per-

formance by 30%,33%, and 48% compared with CWTS-

GA, PGA, and GAACO, respectively.

5.3 Time complexity and computation overhead
evaluation

Finally, we evaluate the computational overhead of each

algorithm. For each algorithm, an average of 1000 execu-

tions was implemented with the Inspiral workflow with

1000 nodes. All algorithms are performed on a server with

8-core Intel� CoreTM i7-9750H 2.6-GHz CPU and 16 GB

of DDR4 RAM. The result of the algorithm execution time

is measured by increasing the number of resources.

As shown in Fig. 12, the computational overhead of

DCHG-TS is much lower than the other three algorithms,

regardless of the number of processors. As can be seen, as

the number of processors increases, more time overhead is

imposed on the algorithms. Besides, when the number of

processors is 25, DCHG-TS and CWTS-GA time overhead

is less than 60 s. Compared to the makespan for the Inspiral

workflow with 1000 nodes, such a time overhead makes

sense for DCHG-TS. Specifically, when the number of

processors exceeds 30, DCHG-TS is more acceptable than

the other three algorithms.

6 Discussions

From the simulation experiments results obtained and

comparing the three state of the art algorithms to DCHG-

TS, it is evident that DCHG-TS has the following

advantages:

1 the fitness function of the proposed algorithm has

considered both deadline and budget constraints of the
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cloud workflow scheduling problems. Most of the

proposed algorithms rely solely on deadline optimiza-

tion and do not focus on cost reduction; meanwhile, the

proposed algorithm takes into account both the quality

of service parameters.

2 DCHG-TS algorithm uses multi-fold crossover and

mutation operators. Moreover, new routines such as

inversion operator, have generated more diverse and

logical populations, which increases the performance

of the proposed algorithm compared to the state of the

art algorithms.

3 The chromosomes are encoded as two-dimensional

forms. Moreover, instead of using a random initial

population, the directed population is generated by

using the solution obtained of HEFT heuristic and the

efficient initial-population routine.

4 DCHG-TS uses the benefits of an efficient load-

distribution routine during execution. At the same

time, most of the state of the art and new algorithms in

this field lacked such routine, which caused a decrease

in the processor’s efficiency.

7 Conclusion

In this paper, a modified and hybrid genetic algorithm is

presented. This algorithm uses a robust heuristic for

workflow scheduling on clouds. In the proposed algorithm

to obtain the optimal solution with the least number of

iterations, the initial population has been replaced with a

population with optimal solutions, and the HEFT heuristic

schedule as one of the chromosomes of the initial popu-

lation has been seeded. The workflow is partitioned, such
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that the tasks of each partition are independent of each

other and can be processed simultaneously. Each chro-

mosome is encoded in two-dimensional form. In the pro-

posed algorithm, the rigorous search is performed using

multi-fold crossover and mutation operators, which covers

the vast and complex problem space and increases the

proposed algorithm’s performance. In DCHG-TS, a load

balancing routine is also used to ensure the optimal per-

formance of resources. Simulation Experiments with dif-

ferent datasets of different sizes proved the scalability and

diversity of DCHG-TS. Comparison results with the state

of the art algorithms Indicate that DCHG-TS is better than

other algorithms in terms of scheduling quality because

DCHG-TS reduces both the cost and the length of the

scheduling. In the future, we plan to consider other

parameters involved in reducing bottleneck and increasing

the overall efficiency of the system, including task data

locality and running task preemption. Also, we intend to

use a combination of different efficient heuristics in

DCHG-TS.
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