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Abstract
Efficient task scheduling is considered as one of the main critical challenges in cloud computing. Task scheduling is an NP-

complete problem, so finding the best solution is challenging, particularly for large task sizes. In the cloud computing

environment, several tasks may need to be efficiently scheduled on various virtual machines by minimizing makespan and

simultaneously maximizing resource utilization. We present a novel hybrid antlion optimization algorithm with elite-based

differential evolution for solving multi-objective task scheduling problems in cloud computing environments. In the

proposed method, which we refer to as MALO, the multi-objective nature of the problem derives from the need to

simultaneously minimize makespan while maximizing resource utilization. The antlion optimization algorithm was

enhanced by utilizing elite-based differential evolution as a local search technique to improve its exploitation ability and to

avoid getting trapped in local optima. Two experimental series were conducted on synthetic and real trace datasets using

the CloudSim tool kit. The results revealed that MALO outperformed other well-known optimization algorithms. MALO

converged faster than the other approaches for larger search spaces, making it suitable for large scheduling problems.

Finally, the results were analyzed using statistical t-tests, which showed that MALO obtained a significant improvement in

the results.

Keywords Task scheduling �Multi-objective optimization � Differential evolution � Virtual machines � Antlion optimization

algorithm � Meta-heuristic algorithms � Optimization problem

1 Introduction

To work efficiently with the growing computational need

of enormous scale applications, cloud computing (CC)

allows a high-velocity deployment of enormous scale

applications in recent days, because the cloud gives flexi-

ble and resilient computing devices/resources, which can

be hired on the pay-per-use model [1]. Massive-scale

applications consist of a tremendous number of jobs/tasks,

which are performed on the environment as a service

cloud. The services in cloud computing are, as shown in

Fig. 1, given in the class of software as a service (SaaS),

platform as a service (PaaS), and infrastructure as a service

(IaaS). SaaS co-operation model passes cloud applications

to the users through the Internet and these cloud applica-

tions are reached utilizing dependent/client applications

such as web browsers on a desktop computer or worksta-

tion. It is normally employed for service cloud applications

such as web-mail sites, video-sharing sites, social net-

working sites, and text document editing sites. PaaS pre-

sents developing applications with a suitable environment

for improvement, examination, and accommodation for

their applications [2].

Furthermore, IaaS gives access to scalable and elastic

computing devices for spreading wide-scale applications.

By the IaaS model, virtualized computing devices called

virtual machines (VMs) with pre-configured CPU proces-

sor, storage, area, memory, and bandwidth are used by the
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end users to find what is the suitable use. Many VM situ-

ations are accessible to the users at various prices to assist

their numerous application needs, and this grants users the

right to manage the computer resources at the end. IaaS

gives three basic benefits to the end-users. The first benefit

is that users employ resources based on needs, and they

pay per usage of the infrastructure similar to how one

might pay for basic services such as power, gas, and water.

This lets users contract or increase their resources agree-

ment based on the demands of their application. The sec-

ond benefit is that IaaS cloud computing gives straight

resources provisioning which enhances the production of

user applications. The third benefit, users can acquire

rented resources anywhere and anytime based on the cov-

eted level of service. Finding the satisfactory number of

resources to perform a collection of massive-scale assign-

ments on IaaS cloud is yet an open and well-known

problem [3, 4].

By virtue of the functional applications and difficulties

of performing massive-scale requests, task scheduling of

applications on the massive scale has fallen under the

emerging investigation in the cloud computing environ-

ment and has attracted vital attention of scholars in recent

days [5, 6]. Several meta-heuristic algorithms have been

employed to tackle task scheduling problems and other

optimization problems which produce optimal solutions for

small volume problems [7–9]. Nevertheless, the quality of

the variety of candidate solutions generated by these opti-

mization techniques deteriorates woefully as the problem

volume and number of variables options to be optimized

increments. Moreover, these techniques do not own supply

and assistance for reaching various QoS demands. On the

other hand, various cloud users want specific QoS satis-

faction, particularly for scientific and industry region

applications [10]. Recently, efforts have been produced to

solve task scheduling problems using meta-heuristic algo-

rithms such as genetic algorithms (GA), moth search

algorithm (MSA), particle swarm optimization (PSO),

whale optimization algorithm (WOA), and ant colony

optimization (ACO) [11–13]. Employing meta-heuristic

techniques for tackling task scheduling problems in cloud

computing have revealed promising developments in

obtaining effective performance, by decreasing the solution

search region [14–16]. However, these techniques result in

the high computational running time, and in some instan-

ces, yield the local optimum solution, particularly when

trading with large solution search regions; moreover,

sometime these techniques may suffer from early conver-

gence (stuck/trapped in local search), imbalance between

local search and global search strategies, and its exploita-

tion search-ability is not as stable as its exploration search-

ability [3, 17].

These limitations affect the obtained task schedule

solutions which influence the production (effectiveness) of

service offered with regard to reaching the coveted QoS

aims. Furthermore, most current works fail miserably to

achieve the vital features that are fundamental to CC such

as heterogeneity, flexibility, dynamism, and elasticity;

therefore, they fail to accomplish the user’s QoS demands.

Consequently, there is a need for optimization-based meta-

heuristic algorithms that can efficiently acclimate with

wide-search-space when scheduling massive-scale cloud

computing applications. Hence, there is a direction for

further improvement in the solutions and further enhanced

solutions of the task scheduling problem. Therefore, in this

paper, a novel multi-objective optimization using hybrid

antlion optimizer (ALO) with elite-based differential evo-

lution (DE) for task scheduling problems in cloud com-

puting environments is presented (MALO).

The exploitation capability of Antlion optimizer (ALO)

still needs to be enhanced; therefore, the elite-based dif-

ferential evolution can be utilized as a local search tech-

nique. This paper introduced a novel multi-objective

optimization method using hybrid antlion optimizer algo-

rithm (MALO) for task scheduling problems in cloud

computing environments with balanced task configuration/

distribution. The introduced algorithm is hybridized with a

Cloud service models

SaaS

PaaS

IaaS

Software as a Service (SaaS)

-Operation environment, software
application provider. e.g. Email, CRM

Platform as a Service (PaaS)

-Operating System, e.g.
Windows/.Net/Linux/J2EE

Infrastructure as a Service (IaaS)

-Virtual platform on which required 
operating environment and application are 
deployed

Fig. 1 Kinds of cloud service providers
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local search technique, differential evolution (DE) strategy,

to improve the exploitation search-ability of the ALO since

the DE algorithm demonstrates the powerful features of the

genetic algorithm (GA) and the evolution strategy (ES).

These features are the extended population of the

genetic algorithm using the crossover operator and self-

adapting mutation of evolution strategy. Based on the

characteristics, it has been confirmed that it enhanced the

effectiveness of other meta-heuristic algorithms. Example,

Zheng et al. [18] applied the differential evolution strategy

to improve the effectiveness of fireworks algorithm to

distribute the data between the fireworks and sparkles.

Also, Yazdi et al. [19], mixed the differential evolution

strategy with harmony search (HS) algorithm and

employed it as a multi-objective scheme of water distri-

bution networks. Yuancheng et al. [20] introduced a hybrid

chaotic artificial bee colony algorithm with differential

evolution strategy for the problem of reactive energy

optimization. The firefly optimization algorithm is devel-

oped, by Zhang et al., as a global search technique by

combining with the differential evolution strategy as per-

formed in [21].

The main contributions of this paper are:

• Design of a discrete ALO algorithm for solving the

tasks’ scheduling problem in a cloud computing

environment.

• Present an alternative meta-heuristic technique based

on the hybrid antlion optimizer (ALO) algorithm with

the differential evolution (DE) strategy (MALO) for

solving task scheduling problems in the cloud comput-

ing environment using synthetic and real trace data.

• Present a multi-objective optimization based on the

proposed MALO to decrease the makespan value and to

enhance the resource utilization together.

• Use a statistical test (i.e., t-test) to validate the obtained

results of the proposed MALO against the well-known

comparative methods using a significance test.

The remaining sections of this paper are organized as fol-

lows. Section 2 presents the related works that have been

used to solve the task scheduling problems. Section 3

explains the basic concepts and definitions of tasks and

machines as well as the proposed task scheduling frame-

work. Section 4 presents the general procedures of the

proposed multi-objective hybrid Antlion Optimizer for task

scheduling. Finally, the experimental plan, performance

evaluation, and results analysis of the proposed multi-ob-

jective hybrid antlion optimizer algorithm (MALO) are

reported in Sect. 5.

2 Related works

This section presents related works that have been used in

the literature to solve the task scheduling problems using

optimization methods. The task scheduling in cloud com-

puting environments is NP-hard complete problem, so

finding an accurate solution (optimal) is ungainly, partic-

ularly for big task sizes. Several methods in the literature

have been proposed to solve this problem [22–27].

An effective binary variant of PSO algorithm with low

cost and time complexity is proposed in [28] for addressing

the scheduling and balancing tasks problem in cloud

computing. Particularly, an objective function to measure

the maximum computational time among different virtual

machines is defined to optimize this problem. Finally, a

particle updating is devised to maintain load balancing. In

[29], a new method using modified PSO algorithm (M-

PSO) is proposed to address the task scheduling problem

and to deal with the local optimum and premature con-

vergence problem. Distinct from the basic PSO, the pro-

posed M-PSO can dynamically change the inertia weight

value to enhance the convergence speed based on the

number of generations. The obtained results proved that the

proposed M-PSO can decrease total cost compared with

other comparative methods. Yassa et al. [30] solved the

scheduling workflow problem on various computing

schemes such as cloud computing foundations. This work

introduced a novel multi-objective optimization approach

for workflow scheduling problem in clouds and introduced

the hybrid PSO algorithm to determine the optimal

scheduling performance. The obtained results highlight the

robust performance of the proposed multi-objective opti-

mization approach. Ben Alla et al. [31] introduced a new

method to solve the task scheduling using a new structure

with Dynamic Queues based on a hybrid PSO algorithm

using Fuzzy Logic (TSDQ-FLPSO). The proposed algo-

rithm aimed at finding the optimal makespan and expecting

time. The obtained results based on the simulator (Cloud-

Sim) showed that the proposed method (TSDQ-FLPSO)

performed the optimal stability results, reducing the wait-

ing time, decreasing the makespan value, and enhancing

the resources utilization compared to other comparative

algorithms. Several related works are in [32].

The basic version of this algorithm, symbiotic organism

search (SOS), is recently introduced as an optimization

technique for addressing mathematical optimization prob-

lems. A discrete symbiotic organism search (DSOS) algo-

rithm is proposed in [33] for finding the scheduling of tasks

on cloud devices. The obtained results showed that DSOS

exceeds the results of PSO for solving the task scheduling

problems. DSOS converges more quickly when the search

grows larger which gives it suitable behavior for big-scale
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problems. In [3], a chaotic SOS (CMSOS) algorithm is

introduced to determine multi-objective large task

scheduling problem on IaaS cloud computing ecosystem. A

chaotic strategy is applied to produce the initial population,

and stochastic sequence-based parts in SOS are replaced

with chaotic distribution to guarantee heterogeneity among

organisms for fast convergence. Therefore, the proposed

CMSOS improved the QoS performance compared with

other methods.

An alternative approach for the problem of cloud task

scheduling is proposed in [34]. This problem tries to reduce

makespan value that is needed to schedule multiple tasks

on several Virtual Machines. The introduced method is

based on using the hybrid moth search algorithm (MSA)

with the differential evolution (DE) strategy. But, the

exploitation ability of MSA needs to be enhanced; hence,

the differential evolution can be utilized as a local search

technique. To evaluate the performance of the proposed

MSDE algorithm, sets of three experimental series are

performed. Two experimental series are carried out and the

results prove that the proposed MSA got better results

compared to the other algorithms according to the effec-

tiveness measures.

For solving the task scheduling problems, a multi-ob-

jective optimization method is introduced in [35]. A multi-

objective scheduling scheme is introduced with an

enhanced ant colony optimization (ACO) algorithm to

address this problem. The obtained results show that the

proposed method achieved better results than other com-

parable methods, particularly as it improved by 56.6% in

the best-case situation. In [36], a new algorithm to solve

cloud task scheduling problem is based on the ACO

algorithm that assigns tasks to virtual machines in the cloud

computing ecosystem in an effective way. To improve the

production of the task scheduler with the ACO algorithm,

diversification and reinforcement approaches are adapted.

The proposed algorithm got better results in solving that

problem effectively compared with other similar methods.

Agarwal and Srivastava [37] introduced a novel meta-

heuristic method based on the genetic algorithm (GA) and

PSO (PSOGA). The proposed algorithm (PSOGA) utilizes

the diversification part of PSO and intensification part of

the GA. The results of the proposed method showed its

ability compared with other methods. Nzanywayingoma

and Yang [38] introduced a hybrid method using GA and

PSO to solve the task scheduling problem. The results are

tested using benchmark test functions and the results

revealed that the proposed hybrid method exceeds the

results of the original PSO and reduces the execution time.

Zheng and Wang [39] introduced a Pareto method using

fruit fly optimization (FFO) algorithm to determine the task

scheduling and resources management problem in the

cloud computing ecosystem (PFOA). The non-controlled

sorting system using the Pareto optimum is utilized and

observed memory is applied to deal with various objectives

in addressing that problem by the proposed method

(PFOA). The obtained results showed that the proposed

PFOA exhibited competitive results compared with other

methods. Several related works are in [40–45]. An over-

view of the related works are given in Table 1.

3 Preliminaries

This section explains the basic concepts and definitions of

tasks and machines as well as the proposed task scheduling

framework.

3.1 Task scheduling problem

The problem of task scheduling in the cloud is defined as

how to schedule, distribute, and assign many different tasks

to many virtual machines effectively and to perform all the

tasks to be accomplished in low execution time [4, 46, 47].

The cloud system (CS) includes (Npm) physical machines

(PM), and each machine includes (Nvm) virtual machines as

shown in Eq. 1).

CS ¼ ½PM1;PM2; . . .;PMi; . . .;PMNpm
� ð1Þ

where PMi, (i = 1, 2,…, Npm) denotes the physical

machines performed in the cloud and it can be expressed as

follows:

PM ¼ ½VM1;VM2; . . .;VMk; . . .;VMNvm
� ð2Þ

where VMk, (k = 1, 2,…, Nvm) denotes the kth virtual

machine. Nvm denotes the number of virtual machines and

VMk denotes the kth virtual machine device in the cloud.

The feature of VMk is determined as follows:

VMk ¼ ½SIDVk;mipsk� ð3Þ

where id denotes the identifier number of virtual machines

and MIPSk denotes the report processing acceleration of

virtual machines by millions-of-instructions-per-second

[48, 49].

T ¼ ½Task1; Task1; . . .; Taski; . . .; TaskNtsk
� ð4Þ

where Ntsk denotes the number of tasks i presented by the

users. Taski denotes the ith task in the tasks series that is

determined as follows:

Taski ¼ ½SIDTi; Task � lengthi;ECTi; LIi� ð5Þ

where SIDTi denotes the identity number of the ith task and

task � lengthi denotes length of the task. Time ECTi
denotes the foreseen completion time for the ith task; LIi
denotes the task preference in the number of tasks Ntsk
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[50, 51]. The Expected Complete Time (ECT) measure of

size Ntsk � Nvm denotes the execution time needed to

perform the task on each computing device (virtual

machine) that can be determined by the following matrix

(3.1). An example of the measure of the expected time to

compute is given in Table (2):

ECT ¼

ECT1;1 ECT1;2 ECT1;3 � � � ECT1;Nvm

ECT2;1 ECT2;2 ECT2;3 � � � ECT2;Nvm

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

ECTNtsk
; 1 ECTNtsk

; 2 � � � � � � ECTNtsk ;Nvm

2
6666664

3
7777775

3.2 Task scheduling problem definitions

Definition 1 (Virtual machines (VMs)) Usually, each vir-

tual machine can be represented as a tuple/row (VM =

{id;mips; bw; pes� number}), where id denotes to the

identifier number of a virtual machine, and mips means a

million instructions per second. mips denotes to the average

execution time for each processing element (PE) of each

virtual machine, bw denotes to the bandwidth of a virtual

machine and pes� number denotes to the number of pro-

cessing elements in each virtual machine [28, 52, 53].

Definition 2 (Tasks/jobs to be scheduled (Ts)) A task

(T) can be defined as tuple/row (T =

{id; length; pes� number}), where id here is the identifier

number of the task T, length denotes to the size of T in

million instructions (MI) and pes� number denotes to the

number of processing elements for executing the assigned

task on the proper virtual machine.

Definition 3 (Near-optimal solution) In this paper, the

near-optimal solution is described as the assignment of a

diverse set of given tasks into several different virtual

machines that seek to minimize the makespan time, waiting

for time, and level of imbalance. At the same time, the

near-optimal solution will maximize device exploitation

and will minimize execution time and cost.

Definition 4 (Degree of imbalance (DI)) Degree of

imbalance is an evaluation measure to test the volume of

load distribution over the virtual machines in terms of their

performance and execution competencies. The small value

of the level of imbalance means that the load of the dis-

tribution process is more stable (balanced). Degree of

imbalance is determined by Eq. (6)

DI ¼ Tmax � Tmin

Tavg
ð6Þ

Table 1 An overview of the related works

Algorithm Proposed Contributions Measures References

PSO Binary version of PSO A particle updating is devised to maintain load balancing Computational

time

[28]

PSO Modified PSO algorithm

(M-PSO)

Dynamically change the inertia weight value Total cost [29]

PSO Hybrid PSO algorithm Introduced the hybrid PSO algorithm to determine the optimal

scheduling performance

Performance [30]

PSO Hybrid PSO algorithm A new structure with Dynamic Queues based on a hybrid PSO

algorithm using Fuzzy Logic (TSDQ-FLPSO)

Makespan

value

[31]

SOS A discrete symbiotic

organism search (DSOS)

algorithm

A discrete symbiotic organism search (DSOS) algorithm is proposed Makespan

value

[33]

SOS A chaotic SOS Achaotic SOS (CMSOS) algorithm is introduced to determine multi-

objective large task scheduling problem

Convergence [3]

MSA A hybrid MSA The hybrid moth search algorithm (MSA) with the differential

evolution (DE) strategy

Makespan

value

[34]

ACA An enhanced ACA A multi-objective scheduling scheme is introduced with an enhanced

ant colony optimization (ACO)

Makespan

value

[35]

ACO An improved ACO A new algorithm to solve cloud task scheduling problem is based on

the ACO algorithm

Makespan

value

[36]

GA-PSO A hybrid genetic algorithm

(GA) and PSO (PSOGA)

A novel meta-heuristic method based on the genetic algorithm (GA)

and PSO (PSOGA). The proposed algorithm (PSOGA) utilizes the

diversification part of PSO and intensification part of the GA

Makespan

value

[37]

FFO A Pareto method using

FFO algorithm

A Pareto method using fruit fly optimization (FFO) algorithm to

determine the task scheduling and resources management problem

in the cloud computing ecosystem (PFOA)

Makespan

value

[39]
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where Tmax denotes to the maximum execution time

achieved, Tmin denotes to the minimum execution time

achieved, Tavg denotes to the average complete execution

time achieved through all the virtual machines.

Definition 5 (Completion time (CT) of the virtual

machine) Completion time of the ith virtual machine is

denoted as the running time after executing the last task on

ith virtual machine (CTi) [54, 55]. It is determined by

Eq. (7)

CTi ¼
Xn
j¼1

Ti:length

VMi:pesnumber � VMi:mips
; ð7Þ

where, i denotes the number of virtual machines and the

i value is within 1; 2; 3; . . .;mf g, denotes the number of

tasks/jobs, and the j value is within 1; 2; 3; . . .; nf g.

Definition 6 (Makespan) Makespan is the overall accom-

plishment time required to complete the execution of all

tasks. On the other hand, in terms of manufacturing,

makespan is the time interval between the start point and

finish point of a sequence of jobs/tasks. The makespan

means that if its value is low, the scheduler is giving ideal

and effective planning steps of tasks to devices (virtual

machine). And if the value of the makespan is high, the

scheduler is not giving ideal and effective planning steps of

tasks to devices. It is determined by Eq. (8)

makespan ¼ max
1� i�m

CTif g ð8Þ

Definition 7 (Resource utilization (Ru)) Resource utiliza-

tion is a performance measure to compute the utilization of

devices/resources. A high utilization price/value means that

the cloud provider gets the maximum profit. It is deter-

mined by Eq. (9)

Ru ¼
Pm

i¼1 CTi

makespan � m
ð9Þ

Definition 8 (Execution cost (EC)) Execution cost denotes

the cost of the cloud computing user to cloud computing

provider against the exploitation of devices to perform

tasks. The main objective for cloud computing users is to

decrease the cost alongside with effective utilization and

smallest makespan. It is determined by Eq. (10)

EC ¼
Xm
i¼1

pricei � CTi ð10Þ

3.3 Mapping antlion optimizer for task
scheduling

To implement the proposed MALO to solve the task

scheduling problem, the ant is defined as a multi-dimen-

sional matrix in which m x n positions exist. This repre-

sents a candidate solution, which presents the distribution

of tasks into various virtual machines [56]. Referring to the

given matrix in Table 2, each column denotes a task

position and each row denotes earmarked tasks to a virtual

machine. In each line, 1 is utilized to represent that a vir-

tual machine is specified to a task and each task will be

performed by one virtual machine only while 0 shows non-

assignment task [57, 58].

For illustration, Table 3 shows modeling of eight tasks

on four virtual machines. Similar to the position matrix,

each ant value is also expressed in the structure of m 9

n matrices and the area for its components is [0, 1]. Similar

to Table 2, the best position of the ant and the global exists

in m x n matrices. 0 and 1 denotes a matrix that gives the

best-obtained distribution of tasks into different virtual

machines. The ants and the global show the best distribu-

tion of tasks into heterogeneous different virtual machines

[59, 60].

Consequently, the tasks scheduling problem in this

paper can be expressed as two sub-problems as follows:

1. How to obtain the optimal schedule and balance

different tasks to heterogeneous virtual machines in

cloud computing using the proposed antlion optimizer

algorithm with low cost.

2. How to obtain low time complexity of the proposed

antlion optimizer algorithm to make it beneficial in

practical situations.

3.4 The proposed multi-objective task
scheduling function

The most important objective function is decrease the

makespan value (in Eq. 11) by arranging the most suit-

able set of tasks to be performed on virtual machines. Also,

the resource utilization (in Eq. 12) is considered alongside

with makespan value, which is a performance measure to

Table 2 An example of the measure of the expected time to compute

T1 T2 T3 T4 T5

V1 T1/V1 T2/V1 T3/V1 T4/V1 T5/V1

V2 T1/V2 T2/V2 T3/V2 T4/V2 T5/V2

V3 T1/V3 T2/V3 T3/V3 T4/V3 T5/V3

V4 T1/V4 T2/V4 T3/V4 T4/V4 T5/V4

V5 T1/V5 T2/V5 T3/V5 T4/V5 T5/V5
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compute the utilization of devices/resources. A high uti-

lization price/value means that the cloud provider gets the

maximum profit.

ECTik ¼
task � lengthi

mipsk
ð11Þ

Ru ¼
Pm

i¼1 CTi

makespan � m
ð12Þ

where k = 1, 2, 3,…, Nvm, i = 1, 2, 3,…, Ntsk, and ECTik
denotes the needed execution time of ith task on kth virtual

machine. Nvm denotes the number of virtual machines and

Ntsk is the total number of tasks. The combined fitness

value with the multi-objective function of each collection

can be calculated using Eq. (13), which defines the evo-

lution strength of the organism to the ecosystem [33].

F ¼ ðmaxfECTikg&minfRukgÞ;
8 2 ½1;Ntsk�mapped to kthVM; k ¼ 1; 2; . . .;Nvm

ð13Þ

Normally, the requested tasks are scheduled on the free

virtual machines and these tasks are served based on its

ordering (first-come-first-serve). The main aim of tasks

scheduling over the virtual machines is how to obtain

higher utilization of virtual machines alongside with lower

makespan value. Expected Time to Compute (ETC) of the

given tasks to be listed on each virtual machine will be

utilized by the proposed algorithm to perform schedule

arrangement. Expected Time to Compute values are

defined by using the ratio of million-instructions-per-sec-

ond (MIPS) of a virtual machine to the length of task

[61, 62] as shown in Table 2.

As mentioned in [34, 63, 64], this is a multi-objective

problem that is hard to solve; in particular, it is hard to get

the near-optimal solution and it needs a new method to deal

with multi-objective function to solve this problem effec-

tively. Thus, the proposed multi-objective tasks scheduling

function is incorporated within the proposed hybrid antlion

optimizer algorithm and employed in this paper to address

the problem of tasks scheduling in the cloud computing

ecosystem. The main aim of the proposed multi-objective

function is decreasing the makespan value and enhancing

the resources utilization together.

3.5 Preliminaries factors

ALO is a novel algorithm meta-heuristic introduced by

Seyedali Mirjalili [65]; it acquired strong considerable

attention and interest of scholars from real computing.

ALO was first introduced to address constrained problems

(i.e., benchmark and engineering problems) with different

wide search-spaces. The ALO algorithm also revealed

robust effectiveness and more active convergence speed

(quicker) when matched with the states of matter search

(SMS) optimization algorithm [66], bat algorithm (BA)

[67], genetic algorithm (GA) [68], flower pollination (FP)

optimization algorithm [69], cuckoo search (CS) opti-

mization algorithm [70], particle swarm optimization

(PSO) algorithm [71], and firefly optimization algorithm

(FA) [72], which are the popular common meta-heuristic

algorithms.

ALO has determined to be an efficient and useful

algorithm for addressing complex optimization multi-di-

mensional problems with wide search-space while con-

trolling multi-objective optimization problems and

constrained optimization problems. Active scholars who

worked on the ALO algorithm since the time of its launch

have studied modification versions, discrete optimization

problems, constrained, binary versions, multi-objective

optimization problems, and hybridization versions.

Hybridization is designed to combine the powers and

strengths of ALO such as global search-ability and accel-

erated optimization with other components from well-

known similar optimization techniques to solve some of the

issues of weakness associated with ALO performance, such

as getting trapped in local optima.

4 The proposed antlion optimizer

Antlion Optimizer (ALO) was proposed by Mirjalili in

2015. This algorithm mimics the way that antlions dig sand

pits to hunt ants in nature [65]. The Pseudo-code of the

proposed multi-objective hybrid antlion optimizer (ALO)

with elite-based differential evolution (DE)(MALO) is

presented in Algorithm 1.

In the proposed algorithm (MALO) as seen in Fig. 2, a

population of solutions is first initialized as ants on a search

Table 3 An example of the ant

k for eight independent tasks

and four virtual machines

Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

VM1 1 0 0 0 0 0 1 0

VM2 0 1 1 0 0 0 0 1

VM3 0 0 0 0 1 1 0 0

VM4 0 0 0 1 0 0 1 0
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landscape. The position of each ant is stored in a vector as

follows:
Algorithm 1 : The procedure of the Ant Lion Optimizer Algorithm
1: Initialize the random solutions (i.e., ants and antlions)
2: Calculate the fitness function (i.e., ants and antlions)
3: Find the best antlions and assume it as the optimal so far

4: while The termination criterion is not reached do
5: for each solution (ant) do
6: Select an antlion using Roulette wheel
7: Update the perimeters c and d
8: Create a random walk
9: normalize the chosen random walk

10: if n¡=CP then
11: Update the current solution by using Eq. (15)
12: else if n¿CP then
13: Update the current solution by using Eq. (23)
14: end if

15: if n¡=CP then
16: Update the current solution by using Eq. (23)
17: end if

18: Calculate the fitness function of all solutions using Eq. (13)
19: Replace an antlion (new solution) with its corresponding ant (current) if becomes fitter
20: end for
21: Update the current best solution if an antlion becomes fitter than the old best
22: end while

23: return Thebestsolution(elite)

Anti
��! ¼ Ai;1;Ai;1; . . .;Ai;d

� � ð14Þ

where Anti shows i
th ant, Ai;d shows the position of the ith

ant in the dth dimension.

The position of each ant in each dimension is updated

using a random walk. This random walk is as follows:

xðtÞ ¼½0; cumsumð2tðt1ÞÞ � 1; cumsumð2tðt2ÞÞ � 1; . . .;

cumsumð2tðtTÞÞ � 1�
ð15Þ

where T is the maximum number of iterations, ti

shows the tth iteration, cumsum is the cumulative

summation, and r(t) is a random function calculated

as follows:

rðtÞ ¼
1 rand� 0:5

0 rand\0:5

�
ð16Þ

where t indicates is the iteration index and rand is a ran-

domly generated number in [0, 1]

To see how this random walk works, Fig. 3 is provided.

This figure shows 50 random walks using the same equa-

tion. It can be seen that the deviations can be quite abrupt

starting from the first iteration.

Start

Determine the inputs 
values for the problem

Initialize the parameters of 
MALO

Generate the Initial 
solutions (population)

Calculate the fitness 
functions of antlions

Determine the best 
solution and position

Determine the probability 
values (i.e., CP and MP)

If n <= CP

Update the current 
solution using Eq. (23)

If n <= MP

Update the current 
solution using Eq. 

(24)

Select the solutions using 
Eq. (9)

Stopping 
criteria are 

met
End

Calculate the fitness 
functions of antlions

Yes

Yes

No

No

No Yes

ALO algorithm DE mechanism

Fig. 2 The proposed MALO

method for solving task

scheduling
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ALO is population-based algorithm [73, 74], so multiple

ants are stored in a population matrix as follows:

Mant ¼

Ant1
��!

Ant2
��!

:

:

:

Antn
��!

2
6666664

3
7777775

ð17Þ

where n is the number of ants in the population.

In ALO, each ant is also evaluated using an objective

function [75]. Therefore, we need a vector to store the

result as follows:

Moa ¼

f ðAnt1
��!Þ

f ðAnt2
��!Þ
:

:

:

f ðAntn
��!Þ

2
6666666664

3
7777777775

ð18Þ

With the above equation the positions and objective of

ants can be calculated as follows. Each ant represents a

solution for a given optimization problem. However, they

have to be guided towards the promising regions of the

search space. This is where the antlions come into play.

Each antlion is also represented with a position vector

and objective vector as follows:

Antlioni
����! ¼ Ai;1;Ai;1; :::;Ai;d

� � ð19Þ

where Antlioni shows i
th antlion, Ai;d shows the position of

the ith ant in the dth dimension.

MAntlion ¼

Antlion1
�����!

Antlion2
�����!

:

:

:

Antlionn
�����!

2
6666664

3
7777775

ð20Þ

Moal ¼

f ðAntlion1
�����!Þ

f ðAntlion2
�����!Þ

:

:

:

f ðAntlionn
�����!Þ

2
6666666664

3
7777777775

ð21Þ

where n is the number of ants in the population.

The ALO moves each ant in a search landscape using

the random walk as discussed above. Each variable in each

ant faces a different random walk, which increases the

exploration of this algorithm. Random walks should be

normalized with respect to the upper and lower bounds of

each variable. These random walks should be gravitated

towards antlions, which simulates how ants get trapped in

antlion sand pits in nature. Fitter antlions have a higher

probability of impacting ant movements. This is simulated

using a roulette wheel. An ant’s movement can be

impacted by only two ants: one selected using a probability

and the best antlion, which is called the elite. The range of

all random walks decreases proportionally to the number of

iterations. Antlions get updated if we find an ant with better

fitness.

To see the behavior of ALO when solving optimization

problems, several subplots are given in Fig. 4.

The first column in this figure shows that the first test

function is a unimodal one and the second one is a multi-

modal test function. The second column shows the history

of positions that ants and antlions visited during the opti-

mization process. High exploration is evident in these

subplots. The third column shows that the range of random

walks decreases proportionally to the number of iterations.

This causes transitions from exploration to exploitation.

The fourth column shows that changes that an ant faces in

one of its dimensions. It can be seen that the ant faces

abrupt changes in the exploration phase. In the exploitation

phase, the changes decrease substantially since the focus is

on the improvement of the solutions. A similar pattern can

be seen in the fifth column, in which the average fitness of

all ants and antlions decreases over the course of iteration.

This shows that the mechanisms of ALO improve the first

randomly generated population of ants. Finally, the last

column shows that the elite antlions also improve, which is

also an indication of the convergence of the ALO

algorithm.

Fig. 3 Fifty random walks using Eq. 15
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4.1 Differential evolution

This section shows the main theories of differential evo-

lution mechanism [76]. Generally, this mechanism utilized

three main operators, selection, mutation, and crossover, to

develop current solutions (population) [18, 19]. Suppose

that the population M with size n is created and the pro-

cedures of updating its solutions using the mentioned three

operators (more details are in Fig. 2), can be explained as

the following points [34, 57]:

The selection mechanism is employed to choose the best

current solution from the produced solutions and the cur-

rent solution according to its fitness function value to move

to the next iteration. This mechanism is determined as in

Equation (22):

vðtþ1Þ;i ¼
yt;ij ifFðyÞ 6 Fðxt;iÞ

xt;i otherwise

�
ð22Þ

where Fy is the fitness value of the suggested solution y.

The crossover (Cr) operator is utilized to create a new

solution yt;ij ij, j = 1, 2, . . . , Ntsk according to the new

solution, and the current solution xt;ij using Eq. (23):

vðtþ1Þ;i ¼
yt;ij if n 6 CP

yt;ij otherwise

�
ð23Þ

where the CP 2 [0, 1] is the crossover probability value,

and n 2 [0, 1] is a random number.

The mutation (Mu) operator is utilized to produce a

mutant solution by mixing a stochastic solution with the

interval between two other stochastic solutions according

to the probability value (MP), if n 6 CP, as in Eq. (24):

vt;i ¼ xt;r1 þ c� ðxt;r1 � xt;r1Þ ð24Þ

where c denotes the scaling of row ri, i = 1, 2, 3 are

respectively independent stochastic integers in [1, N], t is

the number of the current iteration. Note, we added the

searches mechanism (differential evolution: selection,

crossover, and mutation operators) in the proposed MALO

to improve the ALO ability in solving the problems of task

scheduling in the cloud computing environment. This

mechanism played the main role in getting the balance

between the exploration and exploitation search strategies

and it keeps the diversity of the solutions, which helps the

algorithm to avoid the trapped in local search.

4.2 Complexity analysis

In this section, the computational complexity of the pro-

posed MALO algorithms is analysed. The complexity of

the MALO is depended on the complication of the ALO,

Differential Evolution (DE), and multi-objective (MO).

Consequently, the complexity of the proposed MALO

method is given as follows:

O(MALO) ¼ XsO(ALO)þ O(DE)þ O(MO)

where,

O(ALO) ¼ O(t(Dim � Xþ F� Xþ XlogXÞÞ
O(DE) ¼ O(t(Dim � Xþ F� XÞÞ
O(MO) ¼ Oðt� XÞ

where, t denotes to the total number of iterations, Dim

meant to the number of given variables, F signified to the

value of fitness function, and X indicated the number of

solutions (i.e., population size) updated using ALO.

5 Experiments results: evaluation
and discussion

In this section, the experimental plan, performance evalu-

ation, and result analysis and discussion of the proposed

multi-objective hybrid antlion optimizer algorithm

(MALO) are reported.

Fig. 4 Performance observation of ALO on two optimization test functions
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5.1 Experiments setting

The effectiveness (performance) and scalability of the

proposed task scheduling method using MALO is evalu-

ated and compared with other well-known published

methods in the literature. As the proposed MALO method

depends on the enhanced basic antlion optimizer using the

differential evaluation algorithm, so it is essential to eval-

uate its production as a global search method (i.e., as a task

scheduling solver). According to the characteristics of the

introduced MALO, that benefits from the multi-objective

function, basic antlion optimizer, and differential evalua-

tion algorithm, it is supposed that the convergence speed of

the introduced MALO is stabler than the basic algorithm

with a single objective function. Further, the introduced

MALO algorithm as a task scheduling solver can produce

more favorable outcomes than the other popular and, also,

the other meta-heuristic optimization algorithms as the task

scheduling standards.

In order to validate the effectiveness of the proposed

method (MALO), collections of experiments series are

produced in two parts. The first part of the experimental,

involved in Sect. 5.2, is done to address the task scheduling

problem using synthetic datasets. The second part of the

experimental, involved in Sect. 5.3, is done to address the

task scheduling problem using real trace datasets.

5.2 Experiments part 1: Evaluation results
of synthetic datasets

Investigating new procedures or approaches in the real

cloud computing ecosystem, such as Amazon (i.e., EC2)

and Microsoft (i.e., Azure), is usually constrained by

hardness foundations, such as protection, security, speed

and the large cost of money if experiments are reproduced.

So, it is hard to conduct such investigations in repeatable,

dependable, and scalable ecosystems (environments) using

real-world cloud environments [77]. In this paper, experi-

ments are conducted to validate the performance of the

proposed MALO method; they were executed in CloudSim

infrastructures, which is a toolkit for mimicking Cloud

computing scenarios.

Two data-centers were produced, each one holding two

hosts. Each host has twenty GB RAM (one host is a dual-

core machine and the other is a quadcore machine) and one

TB memory storage. Each host has the collective pro-

cessing power of one million MIPS. Several virtual

machines were designed with different generated distribu-

tions as 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

and 2000 instances. The more considerable instances give

insight into the scalability of production of the introduced

algorithms (MALO) with extended problem sizes. The

settings of the adjustment parameters for MALO and other

comparative algorithm are obtained from (Genetic Algo-

rithm (GA) [78], Discrete Symbiotic Organism Search

(DSOS) Algorithm [33], Hybrid Moth Search Algorithm

(MSDE) [34], Particle Swarm optimization (PSO) Algo-

rithm [79], Whale Optimization Algorithm (WOA) [80],

Moth Search Algorithm (MSA) [81], and Antlion Opti-

mizer (ALO) Algorithm [65]). For the ALO parameters

setting, refer to Table 4. The CloudSim test settings are

provided in Table 5.

The degree of imbalance of MALO performance com-

pared with other well-knowing algorithms are summarized

in Table 6. It is observed that at 100 tasks, the degree of

imbalance between the proposed MALO and GA, DSOS,

MSDE, PSO, WOA, MSA, and ALO is around 0.9301,

1.6250, 1.7500, 0.8649, 1.2773, 1.0857, 1.239, 1.3253,

respectively. Meanwhile, in the enormous size of tasks at

1000 tasks, it achieves the results as 0.9701, 2.4416,

1.8654, 1.0010, 0.9985, 1.0865, 0.9874, 0.9996 for the

proposed MALO and GA, DSOS, MSDE, PSO, WOA,

MSA, and ALO, respectively. Generally, we can conclude

that most of the obtained results were the best using the

proposed algorithm (MALO), because it got the smallest

degree of imbalance compared with other comparative

methods.

The proposed algorithm (MALO) acquires slight

improvements according to the makespan measure com-

pared to the other competitive optimization algorithms in a

various number of tasks as shown in Table 7. Additionally,

at task 100, the makespan values of MALO compared with

the original ALO are - 5.56, ? 5.06, ? 7.89 for the Best,

Worst, and Avg makespan, respectively. The proposed

MALO at case one (i.e., 100 tasks) got values of

improvement in Worst and Avg situations. According to

the biggest number of tasks (i.e., 1000 tasks), the makespan

values of MALO compared with the original ALO are

? 1.10, ? 0.43, ? 2.28, for the Best, Worst, and Avg

makespan, respectively. The proposed algorithm (MALO)

reduced the makespan value over all the tasks cases. We

concluded that the makespan value is slowly grown with

rising the size of the tasks. The average value of makespan

when using the modified optimization algorithms is better

Table 4 Parameter settings for the ALO algorithm

Algorithm Parameter Value

ALO p-value Less than 0.05

w 2 to 9 exponential iteratively

Number of iterations 1000

Number of solutions 50
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than the traditional optimization algorithms. Meanwhile,

the average makespan of the proposed algorithm (MALO)

is smaller than the other comparative methods (i.e., GA,

DSOS, MSDE, PSO, WOA, MSA, and ALO). This shows

better performance of the MALO.

In this paper, the statistical analysis, t-test, is conducted

according to the values of the makespan measure as shown

in Table 7. The one-sided t-test is conducted to check

whether the makespan measure values achieved by the

proposed MALO is significantly less than that of ALO for

all task cases using the same termination criteria. This

measure is one of the main tests used to measure the

effectiveness of schedules. The results indicated that nine

out of ten cases (100, 200, 300, 400, 600, 700, 800, 900,

and 1000 tasks) showed significant improvement in

makespan value between both algorithms (the proposed

ALO and original ALO), which means that there is a sig-

nificant difference between the performance of the pro-

Table 5 The CloudSim test settings

Element Parameter Values

Data-center No. of data-center 2

Cloudlet No. of cloudlets 100–1000

Length 1000–2000

Virtual machine RAM 512 MB

MIPS 100–1000

Size 10000

Bandwidth 1000

Policy type Time Shared

No. of CPUs 1

Host No. of Hosts 2

RAM 2048 MB

Storage 1 million

Bandwidth 10000

Table 6 The comparison among the task scheduling algorithms using the degree of imbalance

Algorithm 100 200 300 400 500 600 700 800 900 1000 2000

GA 1.6250 1.3025 1.3252 1.7362 1.8520 1.8525 2.1500 2.3322 2.4411 2.4416 2.9251

DSOS 1.7500 1.3511 1.3526 1.6200 1.7522 1.7141 1.7545 1.8025 1.8055 1.8654 2.2565

MSDE 0.8649 0.9046 0.9321 0.8469 1.0228 1.0017 0.9548 0.9325 0.9895 1.0010 1.9541

PSO 1.2773 1.1988 0.9916 0.9564 1.0591 1.0112 1.0014 1.3147 1.2296 0.9985 1.8953

WOA 1.0857 1.1122 1.0624 0.9105 0.9576 1.0312 1.1451 0.9658 0.9965 1.0865 1.1450

MSA 1.2391 1.1039 0.9807 0.8432 0.9633 0.9010 0.9585 1.2440 1.1900 0.9874 1.0324

ALO 1.3253 1.2590 1.1995 1.0002 1.3541 1.4560 1.6540 1.1385 1.1221 0.9996 1.4251

MALO 0.9301 0.9561 0.9798 0.9020 0.9529 0.9263 0.9667 0.9216 0.9726 0.9701 1.3671

Table 7 Comparison of makespan obtained by basic ALO and MALO generated using different size of tasks

Task size ALO MALO Improvement t-test

Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%) t-value p-value

100 72 79 76 64 75 70 - 5.56 ? 5.06 ? 7.89 ? 5.5796 0.0001

200 112 127 121 109 126 120 ? 2.68 ? 0.79 ? 0.83 ? 2.1693 0.0211

300 254 276 262 229 252 240 ? 9.84 ? 8.70 ? 8.40 ? 12.0503 0.0001

400 341 358 351 318 335 323 ? 6.74 ? 6.42 ? 7.98 ? 13.1664 0.0001

500 435 447 441 436 458 446 - 0.23 - 2.46 - 1.13 - 3.0690 0.0033

600 542 559 553 527 557 543 ? 2.77 ? 0.36 ? 1.81 ? 10.2841 0.0001

700 615 639 630 609 632 620 ? 0.98 ? 1.10 ? 1.59 ? 1.3063 0.1049

800 724 748 740 703 731 720 ? 2.90 ? 2.27 ? 2.70 ? 10.2533 0.0001

900 827 846 840 796 836 810 ? 3.75 ? 1.18 ? 3.57 ? 8.1241 0.0011

1000 904 929 921 894 925 900 ? 1.11 ? 0.43 ? 2.28 ? 6.4584 0.0001

2000 1750 1953 1842 1680 1845 1757 ? 1.04 ? 1.05 ? 1.04 ? 3.4504 0.0145
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posed MALO and original ALO for these task instances.

But, the other cases (500 tasks) have no significant

improvement. Thus, the main goal here is to find a small

makespan value and maximum resources utilization.

Moreover, the comparison results of degree of imbal-

ance among the proposed MALO algorithm and the other

comparative algorithms (GA, DSOS, MSDE, PSO, WOA,

MSA, and ALO) are given in Fig. 5. It can be observed

from these figures that the proposed MALO algorithm

achieved better system load balance in comparison with the

others. MALO got the smallest degree of imbalance, while,

the other comparative optimization algorithms are com-

petitive together. Also, it gave a better degree of imbalance

among virtual machines for all problem instances as can be

observed.

Figure 6 showed the average makespan for executing

the small task instances (100-1000 tasks) using the tasks

scheduling optimization algorithms (i.e., GA, DSOS,

MSDE, PSO, WOA, MSA, ALO, and the proposed algo-

rithm (MALO)). The average makespan for executing the

large task instances (1000-2000 tasks) using the tasks

scheduling optimization algorithms (i.e., GA, DSOS,

MSDE, PSO, WOA, MSA, ALO, and the proposed algo-

rithm (MALO)) are shown in Fig. 7. These two fig-

ures indicated that the proposed tasks scheduling algorithm

(MALO) got better results in terms of the makespan

measure, which means that MALO got the minimization of

makespan values in most cases either small or large as can

be seen in Figs. 6 and 7.

The comparison results between the original ALO and

the proposed MALO algorithm according to the fitness

function values are given in Figs. 8, 9 and 10. From these

figures (results), it can be seen that the proposed algorithm

(MALO) got better results than the original ALO in terms

of performance measure (Fitness function). For instance,

based on the average values of the fitness function, the

proposed MALO algorithm reached the smallest values in

all task cases such as shown in these Figs. 8 9 and 10.

Moreover, the stability of the proposed algorithm (MALO)

is clearly observed during solving all sizes of the tasks

scheduling problem, which proved that using the proposed

multi-objective function as well as the proposed hybrid
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version using deferential evolution accomplish an efficient

method to solve the problem of the tasks scheduling.

Figure 11 showed the response times (CPU) obtained by

the task scheduling algorithms (i.e., GA, DSOS, MSDE,

PSO, WOA, MSA, ALO, and the proposed MALO) to

perform its task. The figure displayed that the proposed

MALO reached minimal response time for solving various

sizes of the tasks scheduling problem in comparison with

all other methods. The enhancement in the proposed

algorithm (MALO) helps to reduce the required time to

find the optimal solution. However, in case of the task size

of 600, PSO algorithm got the minimal response time for

solving this size of the tasks scheduling problem in com-

parison with all other methods.

5.3 Experiments part 2: evaluation results of real
trace datasets

The most reliable approach to assess task scheduling

approaches is to use realistic cloudlets (task/job) mixes,

obtained from large-scale supercomputing situations. In

this part of experiments, the introduced optimization

algorithm (MALO) and the other comparative methods are

evaluated by simulations utilizing the CloudSim to produce

a cloud structure that includes corresponding diverse vir-

tual machines with many of CloudSim’s tasks. The details

of tasks and virtual machines are obtained from a real-

world log-traces (HPC2N Seth log-trace [82]) to model

high-performance computing jobs/tasks and Feitelson’s

Parallel Workloads Archive (NASA Ames iPSC/860 log

[83]). More details are given in Table 7.

The improvement of the proposed MALO compared

with other comparative well-knowing optimization meth-

ods using two real trace datasets (i.e., HPC2N Seth dataset

and NASA Ames dataset) is presented in Tables 8 and 9.

In Table 8, it is observed clearly that the obtained results of

the proposed MALO are better in comparison with all other

comparative methods using HPC2N Seth dataset. In

Table 9, the obtained results of the proposed MALO using

NASA Ames dataset are better than all other comparative

methods.

Figures 12 and 13 showed the response times (CPU)

obtained by the task scheduling algorithms (i.e., GA,

DSOS, MSDE, PSO, WOA, MSA, ALO, and the proposed

MALO) to perform its task (i.e., real trace datasets). In

Fig. 12, the proposed MALO algorithm almost reached the

minimal response time in solving all sizes of tasks in

comparison with the other comparative methods using the

HPC2N Seth datasets. As well, in Fig. 13, the proposed

MALO algorithm almost reached the minimal response

time in solving all sizes of tasks in comparison with the

other comparative methods using the NASA Ames data-

sets. Moreover, the difference between the response times

of the proposed algorithm over all the tasks sizes is clear

compared with other methods using the HPC2N Seth

datasets. But, the difference between the response times of
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the proposed algorithm over all the tasks sizes is not clear

(it is similar to the response time of the DSOS) compared

with other methods using the HPC2N Seth datasets.

Finally, the enhancement in the proposed algorithm

(MALO) helps to reduce the required time in finding the

optimal solution.

The comparison results of degree of imbalance among the

proposed MALO algorithm in comparison with the other

comparative algorithms (GA, DSOS, MSDE, PSO, WOA,

MSA, and ALO) are given in Fig. 14 for the HPC2N Seth

datasets, and the degrees of imbalance are given in Fig. 15. It

can be observed from these figures that the proposed MALO

algorithm achieved better system load balance (degree of

imbalance) in comparison with the other methods. MALO

got the smallest degree of imbalance almost in all the datasets

cases (100–2000), while the other comparative optimization

algorithms are competitive together. Also, it gave a better

degree of imbalance among virtual machines for all problem

instances as can be observed.

6 Conclusion and future works

We presented a novel hybrid antlion optimization algo-

rithm with elite-based differential evolution for solving

multi-objective task scheduling problems in cloud com-

puting environments. Two experimental series were con-

ducted on synthetic and real trace datasets using the

CloudSim tool kit. Response time (CPU), degree of

imbalance, and makespan were measured for each algo-

rithm. The results revealed that MALO outperformed other

Table 8 Comparisons of the

improvement ratio between the

MALO and other comparative

methods using HPC2N Seth

datasets

Algorithm 100 (%) 200 (%) 300 (%) 400 (%) 500 (%) 600 (%) 1000 (%) 2000 (%)

GA 6.32 4.32 4.65 6.27 10.65 5.01 21.58 11.5

DSOS 7.36 5.25 4.69 7.25 10.11 4.68 17.21 15.10

PSO 12.96 3.73 8.43 7.48 10.29 6.27 1.41 2.40

WOA 7.78 7.40 5.52 6.14 9.09 8.55 2.20 2.14

MSA 11.30 2.59 3.44 8.23 9.41 5.04 10.17 6.98

ALO 5.12 5.69 4.69 6.95 9.11 5.17 4.58 6.25

MALO 12.25 7.85 5.60 8.11 8.54 9.25 12.95 16.55

Table 9 Comparisons of the

improvement ratio between the

MALO and other comparative

methods using NASA Ames

datasets

Algorithm 100 (%) 200 (%) 300 (%) 400 (%) 500 (%) 600 (%) 1000 (%) 2000 (%)

GA 1.20 5.25 4.39 2.58 1.67 3.21 22.52 10.12

DSOS 1.25 20.66 19.25 5.25 10.69 10.45 16.21 16.22

PSO 3.59 7.86 10.19 5.06 2.99 7.56 0.64 7.65

WOA 2.67 10.66 1.58 3.16 6.06 9.42 0.75 2.65

MSA 1.13 22.20 25.51 6.42 11.77 20.72 7.45 8.52

ALO 1.25 5.25 3.55 2.34 2.69 3.58 2.97 3.01

MALO 4.25 8.65 11.69 7.14 12.90 11.20 17.56 17.01
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well-known algorithms for solving the task scheduling

problem. MALO converged faster than the other approa-

ches for larger search spaces, making it suitable for large

scheduling problems. Finally, the results were analyzed

using statistical t-tests, which showed that MALO obtained

a significant improvement in the results.

In the future, we plan to compare the newmethodwith other

existingmethods to validate its performance, and to eventually

improve its time complexity. Application of MALO to other

optimization problems is also a possible future research

direction. Furthermore, MALO can be extended to consider

other parameters in the cloud computing environment such as

the peak demand, memory use, and overloads.
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