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Abstract
The growing demand for cloud computing adoption presents more challenges for researchers to make cloud computing

more efficient and affordable for infrastructure providers and end users. The management of cloud computing involves

investing in IT infrastructure in the first phase and investing in energy, maintenance and space costs in the second phase.

However, energy costs account for a large portion of cloud management costs, and saving energy consumption can

significantly reduce overall cloud management costs. Server consolidation is a strategy to improve data center energy

efficiency and resource utilization. Virtual machine (VM) placement is considered one of the main problems with VM

consolidation. The VM placement problem aims to reduce the number of active physical machines in data center to reduce

data center power consumption and maintenance costs. However, the waste of data center resources has a significant

impact on the energy efficiency of the data center, so it should be considered in the VM placement strategy. This paper

proposes a new method based on the Monarch Butterfly Optimization algorithm (MBO) called MBO-VM for new virtual

machine placement, designed to maximize packaging efficiency and reduce the number of active physical servers.

CloudSim toolkit is used to test the efficiency of the proposed MBO-VM approach under real cloud workloads as well as

synthetic workloads. Simulation results show that MBO-VM produces significantly better results compared with known VM

placement techniques. The proposed MBO-VM can reduce the number of active servers more effectively and maximize the

packaging efficiency.

Keywords Cloud computing � VM placement � Server consolidation � Optimization

1 Introduction

Cloud computing technology has been rapidly adopted by

many companies. This adoption of cloud computing has

some benefits, such as reliability, robustness and quality of

service. Virtualization technology makes the potential of

cloud computing possible through three different types of

services on the Internet: The infrastructure is delivered as a

service, such as the Amazon Elastic Compute cloud, the

runtime environment, such as Google App Engine, is called

platform as a service, and finally called Software as a

service, such as SalesForce.com [1, 2].

Virtualization divides the hardware resources of one or

more computers into a multiple execution environments

called a virtual machine (VM). These virtual machines

allow multiple applications to run in a performance-iso-

lated environment. Therefore, cloud computing providers

provide unlimited virtual machines through virtualization,

thereby ensuring the quality of service for end users. A

physical machine (PM) hosts multiple virtual machines, and

each VM requires a certain amount of resources, such as

CPU, memory and storage specified by the end user [3, 4].

VM migration is a compelling feature in cloud computing

that points to a dynamic response to VM requests to ensure

the quality of service of a running application. Therefore,

once the VM needs resources that cannot be satisfied by the

hosted physical machine, the VM is migrated to another

physical machine to provide resource requests for the VM.

One of the important stages of VM migration is finding the

appropriate PM to host VM [5].
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Virtual machine placement is the process of mapping

virtual machines to physical machines. In terms of energy

efficiency, keeping machines idle is the main reason for

high energy consumption. In fact, idle machines consume

about 50–70% of the energy of active machines. As a

result, VM placement has received a lot of interest because

it allows cloud providers to control the use of resources as

they can reduce the number of active machines and

increase the energy efficiency of their infrastructure [7].

As a result, some research has focused on finding

methods and technologies to reduce resource waste and

improve data center energy efficiency. Because the request

for deploying VM is unpredictable so that the virtual

machine placement is considered an extremely complex

allocation problem. Moreover, cloud providers often have

large data centers and aim to serve workload fluctuation, it

turns out that finding the best virtual machine placement

strategy is an NP-hard problem. For example, if n is the

total number of servers running and m is the number of

virtual machines that must be deployed on the physical

server, the possible number of virtual machines allocated to

the available servers is nm. Therefore, the solution space is

too large, making virtual machine placement difficult to

manage and requiring automation [8].

This research addresses virtual machine placement

issues that consider multiple objectives. Consider reducing

data center resource waste and power consumption by

reducing the number of active physical machines. Many

researchers have proposed many constructive and iterative

strategies, some of them have proposed meta-heuristic

optimization algorithms. However, monarch butterfly

(MBO) optimization seems to outperform other optimization

methods [9, 10]. Therefore, this study proposes a meta-

heuristic method based on MBO and considers VM place-

ment problem as a multi-objectives two-dimensional

packaging optimization problem. Therefore, the proposed

algorithm takes into account the multi-objective version of

the VM placement problem and proposes a new VM place-

ment method that takes into account both the energy effi-

ciency of the data center and the reduction of waste of

resources. Finally, the performance of the proposed algo-

rithm is compared with different existing methods.

The remainder of the paper is organized as follows:

Sect. 2 reviews and discusses the related work. Section 3

presents VM placement problem mathematical model where

Sect. 3.1 introduces MBO algorithm details. Section 3.2

presents the proposed VM placement approach. Section 3.3

introduces the performance evaluation and the simulation

results. Finally, the researcher concludes the paper with a

summary and future work.

2 Related work

VM placement has an implication on application perfor-

mance as well as cloud provider revenue. This leads to the

problem of VM placement which aims to get optimal VM to

PM allocation [11, 12]. Numerous techniques are proposed

in the literature for VM placement based on different

objectives, such as improving the energy efficiency of the

physical server hosting virtual machines by reducing the

waste of infrastructure resources [13], increasing the use of

resources through consolidation [14] and distribution of

workload virtual machines among physical machines to

improve overall system performance [15, 16]. The VM

placement techniques in the literature are classified into

exact algorithms such as linear programming problem (LP)

[17–21], dynamic programming [22], backward, branching

and linking and meta-heuristics [6].

This research focuses on the meta-heuristic approach to

address the problem of VM placement in cloud computing.

The meta-heuristic strategy provides a high-level intelli-

gent framework for solving VM placement in cloud com-

puting. For example, ant colony optimization (ACO) is

widely proposed to optimize VM allocation. In [23], they

used ACO to find the best placement of the workload to

improve the energy efficiency of the data center.

In addition, ACO has been applied to balance the use of

computing resources [24]. In [25], the authors proposed

that ACO adjusts the number of active servers based on the

current workload. However, this technology consolidates

virtual machines into a single resource and has high com-

putational costs. In [6], the author introduced the ACO

algorithm to find a set of non-primary solutions to improve

the energy efficiency of the infrastructure and improve

resource utilization. [26] Consider multiple resource con-

straints of physical machines and proposed ACO to improve

network performance and increase network scalability.

The work in [27] solved the VM placement problem as a

multi-objective optimization problem and applied ACO

with positive feedback mechanism to update the pher-

omone for improving the convergence speed. In addition to

using ACO, many researchers have also proposed particle

swarm optimization (PSO) to solve the VM placement

problem. For example, in [28], PSO is used to migrate VMs

from overloaded hosts to underloaded hosts and to reduce

power consumption. The author in [29] introduced PSO

with a two-dimensional particle coding scheme to model

VM placement problems to reduce energy consumption.

In addition, the author in [30] uses PSO to enhance VM

allocation by reducing resource waste. The author in [31]

proposed a hybrid genetic algorithm and PSO method to

improve VM allocation, thereby reducing energy con-

sumption and meeting service level agreements (SLA). The
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work in [32] introduced discrete PSO-based energy-aware

VM mapping to minimize power consumption by predicting

power consumption before assigning VMs to physical ser-

vers. The author in [33] proposed a heuristic PSO that can

optimize VM placement to reduce resource waste. The work

in [34] addressed the VM placement problem as a multi-

objective optimization problem and applies an improved

genetic algorithm to find the best VM placement. The

improved algorithm introduces local search to customize

genetic operators and elite strategies to find the best VM

mapping strategy.

In [35], the authors proposed an improved genetic

algorithm NS-GGA to model VM placement problems to

reduce the number of active PMs, minimize network traffic

and balance the use of multi-dimensional resources. The

author in [36] introduced VM placement and traffic com-

munication algorithm (VPTC) to reduce network power

consumption and avoid congestion. The VPTC algorithm

considers these goals when deciding to allocate a virtual

machine using the GA. GA can also be used to optimize

neural networks to predict workload to reduce energy

consumption in cloud computing.

The problem of VM consolidation has been extensively

studied. The author in [37] proposed a discrete differential

evolution algorithm to consolidate virtual machines into

fewer physical machines by migrating virtual machines in

real time. The algorithm aims to improve resource uti-

lization and energy efficiency. One of the disadvantages of

this algorithm is that it does not consider other optimization

issues, such as minimizing VM migration and resource

utilization during VM consolidation.

Many researchers have explored the placement of virtual

machines with multiple objectives. For example, the

authors in [38] proposed reinforcement learning to mini-

mize energy consumption and waste of resources. In

addition, the authors applied the Chebyshev scalar function

to simplify the weight selection process. Compared with

the existing methods, the algorithm shows good

performance.

One of the most important performance indicators in

cloud computing is network latency, which is affected by

the shared bandwidth between different user applications.

Therefore, the authors in [39] considered optimizing

bandwidth usage in the objective function of the VM

placement problem. They proposed a multi-objective

optimization solution based on genetic algorithm to save

energy and optimize the total data transmission on the

shared channel in the data center.

Due to the natural dynamics of cloud applications and

fluctuations in workload, the authors in [40] proposed a

prediction model to predict future resource requirements.

They introduced an anti-correlated placement algorithm

(PACPA) to predict future CPU usage and bandwidth

resource requirements for hosted applications. Experi-

mental results show that PACPA can improve migration

scheduling time and overall location performance.

The work in [41] introduces an improved bin packing

heuristic algorithm to improve VM placement in the

OpenStack Neat framework. In addition, the authors

introduced a new bin packaging rule called medium tuning

to meet SLA requirements and avoid unnecessary VM

migrations. The algorithm increased the number of SLAs

and migrations by 78% and 46%, respectively.

In [42], the authors introduced a new bandwidth allo-

cation strategy in the VM placement problem. Moreover,

they proposed an improved Levy flight based on a whale

optimization algorithm to minimize the number of active

physical machines and optimize bandwidth usage. The

authors analyzed the results obtained by Friedman’s test,

which showed that the algorithm can reduce the number of

active servers.

Compared with other optimization algorithms, the MBO

algorithm has shown a good performance. Therefore, this

research has developed an MBO-based method that can

allocate virtual machines to a minimum number of physical

servers to reduce energy consumption and minimize the

waste of physical machine resources.

3 Problem statement and formulation

The cloud environment contains a large number of server

nodes, and it is assumed that the data center infrastructure

is fully virtualized and all applications are now running on

virtual machines. Assigning a VM to a PM can be considered

a multi-dimensional vector packing problem, and the size

of the container is resource capacity of the physical

machine. This work considers virtual machines and server

nodes to be characteristics of two-dimensional resources

(CPU and memory). This research does not consider disk

storage because network attached storage (NAS) is assumed

to be used as the primary storage in the cluster. If a server

node hosts n virtual machines, the CPU utilization of that

server is estimated to be the sum of the CPU utilization of

the virtual machines. This concept applies to memory

resources. For example, a server node hosts two virtual

machines. The first VM requires 15%, 30% of the server’s

CPU and server’s memory, and the second VM requires

20%, 40%. Therefore, the server utilization is estimated to

be 35%, 70%. In other words, each server hosts many

virtual machines (VMs) and provides appropriate resources

(such as CPU, RAM) for each machine to be able to run all

processes. Each VM requires a different amount of resour-

ces because it may serve different workloads. The total

used resources of the server can be calculated as the total
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resources consumed by the hosted virtual machines, as

shown in Eqs. 1 and 2, and given by [43]

U
cpu
j ¼

Xm

i¼1

xijv
cpu
i ð1Þ

Umem
j ¼

Xm

i¼1

xijv
mem
i ð2Þ

where Ucpu
j and Umem

j are, respectively, the CPU utilization

and memory utilization of server j, m is the number of

active servers. xij is a binary variable that indicates whether

the VMi is hosted on server j and vcpui , vmem
i represent the

CPU and memory requirements of VMi.

The resource utilization of each server is limited by

some thresholds to avoid performance degradation and VM

migration. For example, the thresholds for CPU and

memory utilization are usually set to 80%, 80%. Now let

20%, 30% be the CPU and memory requirements for the

third VM. However, the server can meet the CPU require-

ments of the third VM, the server cannot host this VM due to

memory shortage. Also, due to the natural dynamics of

application workload, the resource each VM needs may

fluctuate over time. Therefore, if the server cannot satisfy

the dynamic resource requirements of the hosted VM, the

VM migrates to another server to avoid violation of the

SLA. The example above demonstrates how the VM

placement strategy has a major influence on resource waste

and VM migration. In this context, this work considers two

objectives. The first one is to minimize the waste of

resources, and the second is to reduce energy consumption

under the SLA constraint.

3.1 Resource wastage model

The resources available on each server have a great impact

on the number of active servers that can host new virtual

machines. The good virtual machine placement solution

aims to balance resource usage across all dimensions to

host virtual machines as much as possible using a mini-

mum number of active servers. In other words, the key

behind VM placement is to make effective use of resources

to reduce resource waste. This work adopts Eq. 3 from [43]

to calculate the potential cost of wasting resources on each

active server.

Wj ¼
r
cpu
j � rmem

j

���
���þ �

U
cpu
j � Umem

j

ð3Þ

Wj represents the amount of wasted resources from server j,

and rcpuj and rmem
j represent the remaining percentage of

CPU resources and memory from server j. � is a small

positive real number whose value is set to 0.0001.

3.2 Power consumption model

Recently, researchers have demonstrated a linear relation-

ship between CPU utilization and energy consumption

[44]. In addition, the energy consumption of idle server

represents 50–70% of the total energy consumption of the

active server. The idle servers must be turned off in order

to reduce energy consumption in the data center. Therefore,

the energy consumption of the server can be expressed in

terms of the CPU utilization as shown in Eq. 4 and given by

[6]

PT
j ¼ Pbusy

j � Pidle
j

� �
� Ucpu

j þ Pidle
j ð4Þ

PT
j is the total power consumption of server j, and Pidle

j and

Pbusy
j represent the average power consumption of the

server when idle and fully used, respectively.

3.3 VM placement as multi-objective
optimization problem

This section describes VM placement as a multi-objective

combinatorial optimization problem that aims to optimize

both energy consumption and the overall resource wastage.

Multi-objective evolutionary optimization algorithms use

population-based method to find a feasible solution. These

algorithms depend on the dominant principles in the

selection process. The definition of the dominance concept

can be expressed as the following multi-objective mini-

mization problem with m parameters and n objectives.

Minimize fðxÞ ¼ ½f1ðx1; . . .; xmÞ; . . .; fnðx1; . . .; xmÞ� ð5Þ

x ¼ ðx1; . . .; xmÞ 2 X f ¼ ðf1; . . .; fnÞ 2 Y where x is the

solution vector, X is the parameter space, f is the objective

vector and Y is the objective space. To model the problem

of virtual machine placement, it is assumed that the data

center consists of m virtual machines that must be assigned

to a set of PMs. Let VMs ¼ fv1; v2; . . .; vmg be a set of virtual
machines, and each vi represents a two-dimensional

resource vector vi ¼ fvcpui ; vmemi g. In addition, assume that

PMs ¼ fPm1;Pm2; . . .;Pmng to act as a set of servers

available in the data center. In addition, the CPU and

memory utilization thresholds of server j are Tcpu
j ; Tmem

j ,

respectively. It is assumed that the resources required by

each VM cannot exceed the resources that the hosting server

can provide. Suppose y is a binary variable that indicates

whether server j is in use. Therefore, the main objectives

of this work (minimizing resource wastage as well as

energy consumption reduction) as given by [6] are

described in Eqs. 6 and 7
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Minimize
Xn

j¼1

Pj ¼
Xn

j¼1

yj � Pbusy
j � Pidle

j

� �
� Ucpu

j þ Pidle
j

ð6Þ

Minimize
Xn

j¼1

Wj ¼
Xn

j¼1

yj

�
Tcpu
j � Ucpu

j

� �
� Tmem

j � Umem
j

� ����
���þ �

Ucpu
j þ Umem

j

subject to

Xn

i¼1

xij ¼ 18j 2 J

Ucpu
j ¼

Xm

i¼1

xijv
cpu
ij � Tcpu

j 8j 2 J

Umem
j ¼

Xm

i¼1

xijv
mem
ij � Tmem

j 8j 2 J

yij; xij 2 f1; 0g8i 2 I; j 2 J

ð7Þ

The first constraint in Eq. 7 indicates that each VM i is

assigned to a single server j. The second and third con-

straints model the resource requirements of the hosted

virtual machine. Finally, the fourth constraint defines the

domain of the arbitrary variables. The binary variable xi;j
indicates if VM i is hosted on server j and the binary vari-

able yj indicates whether server j is in use or not.

In this research, the first objective is to minimize the

power consumption of allocating VMi to server j. This

objective can be described as the partial contribution of

VMi to power consumption for server j as given by [6] and

described in Eq. 8.

Obji;j;1 ¼
1

�þ
Pm

j¼1 Pjðx0Þ ð8Þ

where Pjðx0Þ is the normalized power consumption of the

feasible solution x0 of server j and its value is calculated as

follows

Pjðx0Þ ¼
PT
j

Pmax
j

ð9Þ

where Pmax
j is the peak power consumption of server j.

Similarly to the first objective function, the overall

resource wastage results from allocating VMi to server j can

be calculated as given by [6] and described in Eq. 10.

Obji;j;2 ¼
1

�þ
Pm

j¼1 Wjðx0Þ ð10Þ

whereWjðx0Þ is the normalized resource wastage of server j

for solution x0. The final multi-objective function combines

the first objective and the second objective for each VM

assignment as follows

Obji;j ¼ Obji;j;1 þ Obji;j;2: ð11Þ

4 Monarch butterfly optimization

MBO is a new population-based meta-heuristic algorithm,

introduced by Wang et al. It ideals and simplifies the

migratory behavior of monarch butterflies between two

different places when the seasons change. MBO uses the

migration operator and the adjusting operator to update the

newly generated butterflies. Like other swarm-based

algorithms, MBO applies the iterative approach to update

and spawn new individuals. This approach can be

demonstrated as follows

1. Initialization MBO randomly generates a predefined

number of butterflies that make up the population.

Each butterfly represents a possible solution to the

problem.

2. Fitness evaluations The fitness of each butterfly is

calculated and sorted according to the objective

function.

3. Division The resulting population is divided into two

subpopulations: Subpopulation 1 is called Land 1,

while subpopulation 2 is called Land 2. The sizes of

subpopulation 1 and subpopulation 2 are defined by the

predefined q ratio, which is called the ratio of

migration.

4. Migration This process produces the first part of the

new population. Replace existing butterflies on Land 1

with randomly selected individuals from Land 1 and

Land 2. The size of the newly generated part is equal to

the size of existing butterflies on Land 1. Each newly

generated butterfly xtþ1 is generated as follows:

Suppose xtþ1
i;k is the value of element k of butterfly i

in generation t þ 1, then xtþ1
i;k can be calculated as

shown in Eq. 12.

xtþ1
i;k ¼

xtr1;k r� q

xtr2;k r[ q

8
><

>:
ð12Þ

where q is the migration period and equals to 5/12.

xtr1;k; x
t
r2;k are position values k at iteration t of ran-

domly selected butterflies from Land 1 and Land 2,
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respectively. In addition, r is randomly generated value

calculated from Eq. 13.

r ¼ rand � peri ð13Þ

where rand is a random value generated from a uni-

form distribution, while peri is a predefined constant

value and is called the migration period and is equal to

1.2

5. Adjustment This operator is used to generate the second

part of the new population. The size of the newly

generated population equals the number of butterflies

on Land 2. Each new butterfly can be generated based

on the best individual butterfly or a randomly selected

butterfly on Land 2. Suppose xtþ1
j;k is the position value

k of the butterfly j from Land 2, then xtþ1
j;k is generated

as shown in Eq. 14.

xtþ1
j;k ¼

xtbest;k rand� q

xtr3;k rand[ q

8
><

>:
ð14Þ

In the above equation, xtbest;k and xtr3;k are the position value

k of the best global individual in Land 1 and Land 2, and k

position value of the randomly selected butterfly from Land

2, respectively. The newly generated butterfly can be fur-

ther updated as shown in Eq. 15 if the value of the ran-

domly generated number is greater than the adjustment rate

BAR

xtþ1
j;k ¼ xtþ1

j;k þ aðdxk � 0:5Þ ð15Þ

where a is the weighting factor that controls the influence

of the adjustment process as shown in Eq. 16, where Smax is

the maximum walking step that the individual can move.

Furthermore, dx is the local walk of butterfly j performed

by Levy flight that can be calculated as shown in Eq. 17.

a ¼ Smax=t
2 ð16Þ

dx ¼ le�vyðxtjÞ ð17Þ

The two subpopulations of the migration and adjustment

operators are combined to form the new population. The

same process continues dividing, updating and combining

the population until a satisfactory solution is found or the

algorithm reaches a predefined maximum number of iter-

ations. The pseudocode of the migration operator and the

adjusting operator is shown in Algorithm 1 and Algorithm

2, respectively.

5 MBO for solving VM placement problem

In our previous work [46], resource optimization and pro-

visioning framework (ROP) is proposed to satisfy QoS

goals. The MBO-VM algorithm proposed in this research is

used as global resource optimizer in ROP to optimize the

VM placement process. Thus, the MBO-VM algorithm runs

on the controller node to reduce the power consumption

and the cost of cooling process.

The subsequent sections present the design of the MBO

for solving the VM placement problem in cloud data center.

Firstly, the researcher introduces encoding schema to adapt
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MBO for solving VM placement problem. Secondly, an

efficient repair operator known as greedy optimization

algorithm (GOA) is employed. Thirdly, this work intro-

duces, evaluates and tests three different types of distri-

bution methods in MBO’s subpopulations.

5.1 Encoding scheme

Meta-heuristics have proven to be effective and high-per-

formance and can solve many problems in science and

engineering. However, one of the biggest challenges in

applying any meta-heuristic is finding the right candidate

encoding scheme. According to the VM placement problem

in Sect. 3, if there are n servers running and m VMs, the

search space size is nm.

In an MBO implementation, a potential solution is rep-

resented as a set of virtual machines that must be assigned

to a server. Each butterfly in the population is represented

by a matrix of size m, where m is the dimension of the

problem to be solved. In addition, each element of the

matrix refers to the position of the element k of the but-

terfly j, and its value is in the range of [1, n]. For example,

Fig. 1 shows one of the candidate solutions for m virtual

machines and n ¼ 3 servers.

In this example, VM4, VM7, VM9 are assigned to a server

with an ID equal to P1, whereas VM3, VM5 are assigned to

server P2. Another example, if there are five servers and

ten virtual machines, one of the possible solutions is [1 3 2

1 4 2 1 5 2 4].

At the beginning of each iteration, a new population will

be randomly generated, where each butterfly is represented

by an array xi ¼ fxi;1; xi;2; xi;3; . . .; xi;mg and represents one

of the potential solutions. For example, Eq. 18 demon-

strates the generation of new butterfly i, where the solution

j is equal to f1; 2; 3; . . .;mg, a generated random number

/ 2 ½0; 1�, and the upper bound (ub) and lower bound (lb)

are equals n and 1, respectively. In addition, according to

the mapping function in Eq. 19, each value of xi;j is

rounded to a closed integer value.

xi;j ¼ lbþ ðub� lbÞ � / ð18Þ

gðxi;jÞ ¼¼
roundðx;jÞ xi;j � n

n xi;j [ n

�
ð19Þ

5.2 Repair and optimization operator

In meta-heuristic algorithms, most of the time, some newly

generated individuals violate the constraints of the prob-

lem. In the context of VM placement, some solutions violate

the capacity of the target server. To overcome this chal-

lenge, there are two approaches. The first solution is to use

the penalty method in the objective function [45]. The

subsequent solution is to use a greedy method for indi-

vidual optimization [47]. However, the penalty methods

are possible, but not for large-scale problems. Greedy

algorithms can be used to improve the performance of

meta-heuristic algorithms [48]. Therefore, this work

applies greedy repair and optimization operators to repair

all infeasible solutions.

Fig. 1 An example of VM
placement and its corresponding

butterfly
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For abnormal individuals that violate the capacity limit

mentioned in Eq. 7, the algorithm performs two operations:

repair and optimization. On the one hand, Algorithm 3

shows the pseudocode of the repair operator. The algorithm

estimates the final capacity of each server after mapping

the virtual machines, as shown in Lines 6 to 9. Lines 12 to

18 detect overloaded servers, release some virtual machi-

nes from these servers and set the butterfly value k to zero,

as shown in line 19. On the other hand, the optimization

operator pseudocode is shown in Algorithm 4. The algo-

rithm attempts to allocate the released virtual machine to a

server with light load, as shown in Lines 4 to 11. However,

if there are insufficient resources on the currently active

servers to accommodate the released virtual machines, the

algorithm starts a new server, as shown in Algorithm 5.

5.3 Main procedure of proposed MBO-VM
algorithm

After the careful design of the encoding schema, and repair

and optimization operator, it is time to present the proposed

MBO-VM algorithm for VM placement. The pseudocode is

described in Algorithm 6. The proposed MBO-VM algo-

rithm first generates a random initial population of NP

individuals and then divides the entire population into

subpopulation 1 (NP1) and subpopulation 2 (NP2). The

following evolutionary process repeats itself until a pre-

defined certain criterion is satisfied. The migration operator

uses the neighborhood mutation shown in Algorithm 1 to

generate new monarch butterflies from subpopulation 1 and

subpopulation 2. Then, the adjusting operator shown in

Algorithm 2 uses the best butterfly in the two subpopula-

tions and randomly selects individuals from the subpopu-

lation 2 to generate a new subpopulation 2. In addition, the

adjusting operator uses Levy flights to explore the search

space more effectively and accelerates convergence. Then,

the greedy algorithm shown in Algorithm 3 is applied to

repair and optimize the infeasible solutions. Finally, the

two subpopulations are regrouped to form the whole pop-

ulation. Figure 2 summarizes the main procedure of the

proposed MBO-VM algorithm.
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Fig. 2 Flow chart of the MBO-
VM algorithm
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5.4 Complexity analysis of the proposed MBO-
VM algorithm

This section estimates the time complexity of the proposed

MBO-VM algorithm. Obviously, the time complexity is

mainly determined by step 1–3. In step 1, the initialization

of NP butterfly individual costs time OðNP� nÞ ¼ OðnÞ.
In step 2, the time complexity for calculating the fitness of

individuals using Quicksort algorithm costs OðnlognÞ. In
step 3, the time complexity consists of computation times

of migration operator, adjusting operator and greedy repair

and optimization algorithms. The migration operator costs

time OðNP1� nÞ ¼ Oðn2Þ. The adjusting operator costs

time OðNP2� nÞ ¼ Oðn2Þ. Finally, the greedy repair and

optimization algorithm costs OðnÞ. Thus, the MBO-VM runs

in time complexity

OðnÞ þ OðnlognÞ þ Oðn2Þ þ Oðn2Þ þ OðnÞ ¼ Oðn2Þ:

5.5 MBO with different population methods

In the basic MBO, the population is divided into subpopu-

lation 1 and subpopulation 2. Previous MBO studies have

shown that individuals in subpopulation 1 have better fit-

ness compared with individual in subpopulation 2 [49].

With VM placement problem, this work evaluated three

different types of individual population strategies.

• MBO Strategy 1 (MBO-S1) The subpopulation 1 and

subpopulation 2 are randomly generated from the entire

population. During the evaluation process at the end of

each iteration, the newly generated subpopulation 1 and

subpopulation 2 are not recombined. Therefore, each

subgroup uses a different search operation to find

potential solutions because there is little information

exchange between subgroup 1 and subgroup 2. As a

result, this strategy may perform worse and may not

find a satisfactory solution.

• MBO Strategy 2 (MBO-S2) During the initialization

process, individuals with better fitness are assigned to

subpopulation 1, and the remaining population belongs

to subpopulation 2. Similar to MBO-S1, at the end of

each iteration phase, the two subpopulations will not be

recombined during the evaluation process.

• MBO Strategy 3 (MBO-S3) This strategy is similar to

the basic MBO, but the two subpopulations are recom-

bined in a particular iteration and not every iteration.

This method increases the performance of the evalua-

tion process to a certain extent and therefore improves

the ability to find the right possible solution.

6 Performance evaluation

The performance of our proposed MBO-VM algorithm to

save energy and maximize resource usage has been com-

pared with other VM placement algorithms in the literature.

6.1 Experimental setup

The CloudSim toolkit [50] was used to evaluate our pro-

posed MBO-VM algorithm. CloudSim is the most widely

used simulation tool among cloud researchers, and most

cloud researchers use it extensively to develop VM place-

ment algorithms. It provides a layered simulation frame-

work that helps researchers to model, simulate, evaluate

new applications, and cloud computing architectures. To

evaluate the proposed MBO-VM algorithm, six different

types of physical machine configurations were used to

simulate the data center, as shown in Table 1. In addition,

Table 2 shows all the different types of virtual machines

used to evaluate the proposed VMP solution.

All experiments are performed using an HP laptop with

Windows 10 operating system (with Core i5 and 8 GBs

RAM), and three experiments are conducted to evaluate the

effectiveness of the proposed MBO-VM solution in terms of

energy saving and reducing resources wastage. The pur-

pose of the first experiment is to verify the performance of

MBO under different population strategies. The second

experiment uses a synthetic workload that varied from light

load to heavy load to evaluate the scalability of the pro-

posed MBO-VM solution relative to other methods in the

literature. The experiment consisted of 100–400 VMs and

100 PMs for two different types of servers.

The third experiment evaluates the performance of the

proposed MBO-VM solution against real PlanetLab

Table 1 PM configurations in

data center
Nos. Machine model name MIPS Num cores RAM (MB) Type

1 HP Proliant ML 110 G4 1860 2 4096 Small

2 HP Proliant ML 110 G5 2660 2 4096 Small

3 HP Proliant ML 110 G3 3000 2 4096 Medium

4 IBM server x3250 3067 4 8192 Medium

5 IBM server x3550[Xeon-X5675] 3067 6 16384 Big

6 IBM server x3550 [Xeon-X5670] 2933 6 12288 Big
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workload traces [50]. This workload contains the CPU

usage of 1033 virtual machines and is evaluated in a data

center consisting of 400 PMs from six different types of

servers.

6.2 Compare MBO performance with different
population strategies in VM placement
problem

This section uses the three different population strategies

described above to evaluate the performance of the pro-

posed MBO-VMP algorithm in terms of energy saving and

resource waste reduction. Five different configurations are

used to compare the performance of the proposed three

population strategies under different load conditions (light

to heavy load). The experiment uses two types of physical

machines to simulate a 100 PM data center: HP ProLiant

ML110 G4 and IBM x3250 server, with workloads ranging

from 100 VM to 400 VMs.

Table 3 shows the performance comparison of MBO-S1,

MBO-S2 and MBO-S3 in four different configurations. The

table shows the best solution, worst solution and mean

solution for the three different strategies along with stan-

dard deviation (SD). The best values obtained for each

strategy are shown in bold. It is clear from Table 3 that

MBO-S3 shows superior performance compared with the

other two strategies. For example, the mean, best and worst

values of all configurations obtained through MBO-3 are

better than the values obtained through MBO-S1 and MBO-

S2. In addition, the SD value of MBO-3 is much smaller

than the SD values of the other two strategies. Generally,

MBO-S3 is better than MBO-S1 and MBO-S2 in mini-

mizing power consumption and has stable performance

under different load conditions.

Figure 3 shows the average results of CPU and RAM

usage when using MBO-S1, MBO-S2 and MBO-S3.

Obviously, MBO-3 achieved the highest CPU and RAM

usage, close to 100%. It is clear that, MBO-S3 balances

CPU and RAM usage compared with MBO-S1 and MBO-

S2. Therefore, MBO-S3 effectively finds a solution space

and can obtain the best solution. This solution can mini-

mize the waste of resources and balance the use of

resources in different dimensions.

Experimental results show that the average performance

of MBO-S3 is better than MBO-S1 and MBO-S2. There-

fore, this research uses MBO-S3 (MBO-VMP) to solve the

problem of virtual machine placement in cloud computing.

6.3 MBO-VM performance using synthetic
workloads and variable virtual machine
numbers

The purpose of this experiment is to compare the proposed

MBO-VM with other literature methods such as ACO, PSO

Table 2 VM configurations

used in data center
Nos. VM type MIPS Num cores RAM (MB) VM size (GBs)

1 Type 1 [Extra Big] 2500 1 1870 2.5

2 Type 2 [Big] 2000 1 1740 2.5

3 Type 3 [Small] 1000 1 1740 2.5

4 Type 4 [Extra Small] 500 1 613 2.5

Table 3 Energy consumption of

different population strategies

using PM Type 1

No. of VM MBO-S1 MBO-S2 MBO-S3

Best Worst Mean SD Best Worst Mean SD Best Worst Mean SD

100 23.44 24.93 23.63 0.80 22.31 24.23 23.95 0.70 20.15 20.85 20.52 0.18

200 45.21 46.86 46.32 0.90 44.76 45.23 45.10 0.76 43.22 43.83 43.50 0.12

250 57.34 58.63 58.42 0.96 56.46 57.37 56.76 0.82 54.78 55.12 54.84 0.14

300 70.21 73.47 72.48 1.65 68.72 70.54 69.21 1.21 64.72 64.98 64.84 0.13

400 92.34 95.32 94.23 1.77 91.86 93.98 92.56 1.43 89.55 90.98 89.65 0.08

Fig. 3 The average CPU and RAM usage for different population

strategies
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and GA. The configuration of the experiment is similar to

the previous experiment.

Figure 4 shows the energy consumption results of the

proposed MBO-VM and PSO, ACO and GA. The results

show that the proposed MBO-VM can save about 10–2% of

energy under light workload and 8–11% of energy under

heavy load. For example, for 100 virtual machines, our

proposed solution reduces energy consumption to 18 KWh,

while the PSO method consumes 20 KWh. The results show

that our proposed solution outperforms other methods in

terms of energy consumption.

Figure 5 shows the resource utilization of an HP Pro-

Liant ML110 G4. Obviously, the proposed MBO-VM can

balance the utilization of CPU and RAM, thereby reducing

the waste of resources and the number of active servers. On

the one hand, when using the proposed solution, the CPU

and RAM utilization results are approximately 0.95 and

0.93, respectively. On the other hand, the resource uti-

lization when applying PSO is 0.90 for CPU and 0.85 for

RAM. However, for GA, the resource usage of CPU and

RAM is 0.84 and 0.74, respectively. Therefore, the results

show that after using the proposed MBO-VMP, CPU

resource usage increased by 13% and RAM usage

increased by 25%.

6.4 MBO-VM performance using PlanetLab
workload in a heterogeneous environment

In Experiment 2, all servers are homogeneous. Because in

real environments, physical machines are usually hetero-

geneous. This experiment uses heterogeneous servers and

real workloads to test the performance of the proposed

MBO-VM. This workload consists of the resource utilization

from 1033 VMs on PlanetLab servers.

Table 4 shows the running time of different methods to

find the best allocation strategy for different VM placement

with different problem size. Obviously, GA algorithm needs

more time. This because in a heterogeneous environment

with a large problem scale, the VM placement becomes

more difficult. However, compared with other methods, the

proposed MBO-VM| algorithm can still find the best VM

placement strategy on different problem sizes.

As shown in Table 5, six types of physical machines are

used to form three different configurations. For example, in

configuration A1, the data center consists of 400 PM and

two host types. In A2, the data center consists of 400 PM

for four types of hosts. Finally, A3 is configured with six

host types and has 400 PM

Figure 6 shows the energy consumption rate for MBO-

VM, ACO, GA and PSO in three configurations with a

PlanetLab workload. The results show that compared with

other methods, the proposed MBO-VM method can reduce

energy consumption by 7 � 19%. For example, in A1

Fig. 4 Average power consumption of all active PMs of HP ProLiant

ML110 G4 type

Fig. 5 Average CPU and RAM utilization of all active PMs of HP

ProLiant ML110 G4 type

Table 4 Time (in seconds) to

obtain optima with different

problem size

No. of VM MBO-VM PSO ACO GA
Mean (time) Mean (time) Mean (time) Mean (time)

100 0.5 0.8 1.4 1.9

200 0.8 1.3 2.1 2.3

250 1.2 2.0 2.5 2.6

300 2.0 2.6 2.8 3.3

400 2.1 3.5 3.4 3.5
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configuration, MBO-VM reduces energy consumption to

39.2 Kwh. On the other hand, the energy consumption of

ACO, GA and PSO is 45.5, 48.3 and 42.3. Therefore, the

results show that the proposed MBO-VM can save more

energy for all configurations compared with other methods.

Figure 7 shows the number of host shutdowns in all

configurations. It is noted that the total host shutdowns in

case of the proposed MBO-VM are much higher compared

with other solutions for all configurations. For example, in

configuration A1, the proposed solution saves approxi-

mately 14–18% of the total number of physical machines.

In the A3 configuration, the proposed MBO-VM| efficiently

balances resource usage with increasing host capacity and

shuts down more physical machines. In other words, as the

host capacity increases, the proposed MBO-VM increases

the number of server shutdowns from 14–18% to 22–31%

of the total hosts. As a result, each running physical

machine can accommodate more virtual machines and

therefore reduces the amount of PM required to serve the

workload.

7 Conclusion

With the development of large-scale cloud computing

environments, energy consumption has a major impact on

the total cost of cloud system. Therefore, this paper pro-

poses MBO-VM method for dynamically assigning VMs to

available PMs based on current workload and PM charac-

teristics. The main goal of the MBO-VM is to reduce energy

consumption and minimize waste of resources (packaging

efficiency). The CloudSim toolkit is used to evaluate the

performance of the proposed MBO-VM with real workloads

and synthetic workloads. Simulation results show that the

proposed MBO-VM makes the data center more energy

efficient and balances resource usage compared with other

existing VM placement methods. Future research is planned

to use the proposed solution to solve other cloud issues,

such as dynamic virtual machine migration and task

scheduling issues. In addition, it can be applied to other

emerging applications, such as image segmentation and

medical diagnostics.
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