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Abstract: In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global 

optimization and engineering design problems. This improvement is proposed to alleviate the lack 

of population diversity, the imbalance between the exploitation and exploration, and premature 

convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy 

named dimension learning-based hunting (DLH) search strategy inherited from the individual 

hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood 

for each wolf in which the neighboring information can be shared between wolves. This dimension 

learning used in the DLH search strategy can enhance the balance between local and global search 

and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the 

CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared 

with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE 

statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm 

is very competitive and often superior compared to the algorithms used in the experiments. The 

results of the proposed algorithm on the engineering design problems demonstrate its efficiency and 

applicability. 

Keywords: Optimization, Metaheuristic, Swarm intelligence algorithm, Grey wolf optimizer, 
Improved grey wolf optimizer, Engineering optimization problems.

1. Introduction

In the area of optimization, solving an optimization problem typically means finding optimal 

values for the decision variables to maximize or minimize a set of objective functions while not 

violating constraints. Most of the real-world optimization problems have several difficulties, 

including but not limited to, high computational cost, non-linear constraints, non-convex search 

landscape, dynamic/noisy objective functions, and large solution space (Fister Jr et al., 2013). These 

challenges are the main criteria to choose either exact or approximate algorithms for solving 

complex problems. Although the exact algorithms are capable of precisely providing the global 

optimum, their execution time is exponentially increased proportional to the number of variables 

(Talbi, 2009). On the contrary, the stochastic optimization algorithms are able to identify optimum 

or near-optimum solutions within a reasonable time. Heuristic and metaheuristic algorithms are 

recognized as one of the most practical branches of approximate algorithms, which are capable of 

solving complex problems (Sörensen, 2015). The metaheuristic algorithms can be classified into 

two categories non-nature-inspired and nature-inspired algorithms. Although a few algorithms have 



been developed in the first category such as the tabu search (TS) (Glover, 1989, 1990), iterated local 

search (ILS) (Lourenço et al., 2003), and adaptive dimensional search (ADS) (Hasançebi et al., 

2015), many metaheuristic algorithms have been inspired by nature.

A wide variety of the nature-inspired algorithms have been introduced such as differential 

evolution (DE) (Storn et al., 1997), particle swarm optimization (PSO) (Eberhart et al., 1995), 

artificial bee colony (ABC) (Karaboga et al., 2007), krill herd (KH) (Gandomi et al., 2012), and 

gravitational search algorithm (GSA) (Rashedi et al., 2009). They are flexible and simple by nature 

for solving complex problems with continuous search space. Also, some metaheuristics such as 

genetic algorithm (GA) (Holland, 1992) and ant colony optimization (ACO) (Dorigo et al., 2008), 

were proposed for binary and combinatorial optimization. Moreover, different methods were 

employed to develop the binary version of a continuous algorithm (Taghian et al., 2018). The 

metaheuristic algorithms are applied for solving complex problems in different applications such as 

optimal power flow (Attia et al., 2018; A.-A. A. Mohamed et al., 2017; Nuaekaew et al., 2017), chip 

design (Fard et al., 2014; Venkataraman et al., 2020), feature selection (Arora et al., 2019; Faris, 

Mafarja, et al., 2018; Mafarja et al., 2019; Mafarja et al., 2018; Taghian et al., 2019a, 2019b; 

Taradeh et al., 2019), diseases diagnosis (Arjenaki et al., 2015; Gunasundari et al., 2016; 

Muthukaruppan et al., 2012; Shen et al., 2016; Zamani et al., 2016b), tour planning (Banaie-

Dezfouli et al., 2018) and engineering optimization (He et al., 2020; He et al., 2019; Li et al., 2020; 

Wu et al., 2019). 

The grey wolf optimizer (GWO) (Mirjalili et al., 2014) is a successful nature-inspired 

metaheuristic, which was recently proposed based on the leadership hierarchy and group hunting 

mechanism of the grey wolves in nature. The GWO has been regarded as an effective metaheuristic,  

and it has been applied in solving different optimization problems in many fields such as 

engineering, machining learning, medical, and bioinformatics (Faris, Aljarah, et al., 2018). In GWO, 

the search process is guided by three best wolves in each iteration, which shows a strong 

convergence toward these wolves. In contrast, it suffers from the lack of the population diversity, 

imbalance between the exploitation and exploration, and the premature convergence (Heidari et al., 

2017; Lu et al., 2018; Tu et al., 2019a). 

To overcome these weaknesses, in this paper, an enhancement of GWO named improved grey 

wolf optimizer (I-GWO) is proposed. The I-GWO improves the hunting search strategy of wolves 

by using a new search strategy named dimension learning-based hunting (DLH). The DLH search 

strategy is inspired by the individual hunting behavior of wolves in nature, and it increases the 



domain of global search by multi neighbors learning. Then, in each iteration, the I-GWO has both 

candidate wolves generated by the DLH and the GWO search strategies to move the wolf Xi from 

the current position to a better position.  In addition, the I-GWO uses an additional selecting and 

updating step to select the winner candidate wolf in each iteration and update the current position 

for the next iteration. 

In the rest of the paper, the related works are discussed and criticized in Section 2. Section 3 

briefly presents the mathematical models of the GWO algorithm. The proposed I-GWO algorithm 

is proposed in Section 4. Section 5 thoroughly presents and analyses the experimental results on 

benchmark functions, and the significance of the results is proved by statistical analysis, 

respectively. The applicability of the I-GWO for solving real application problems is tested by 

engineering problems in Section 6. Section 7 discusses the main reasons for successes of the I-GWO 

and the DLH search strategy. Finally, the conclusions and future works are given in Section 8. 

2. Related work

There are different ways to classify and describe metaheuristic algorithms. One way is to 

differentiate between the origin of them, which can be classified into two categories non-nature-

inspired and nature-inspired algorithms. The non-nature-inspired algorithms are mostly based on an 

individual idea neither based on nor associated with any natural or social phenomena. There have 

been proposed a few successful algorithms in this category, such as the tabu search (TS) (Glover, 

1989, 1990), iterated local search (ILS) (Lourenço et al., 2003), and adaptive dimensional search 

(ADS) (Hasançebi et al., 2015). The TS algorithm applies a traditional local search strategy 

enhanced by memory structures to store information about solutions visited in the past. It can 

promote the diversification when it does not allow returning to the recently visited solutions. The 

ILS algorithm is an improved hill-climbing algorithm to decrease the probability of getting stuck in 

the local optima; however, it can be trapped by multimodal problems. In ADS, to control the 

algorithm's convergence rate during the optimization process, the search dimensionality ratio is 

adaptively updated. It attempts to balance between the exploration and exploitation characteristics 

of the ADS during its search in the design space based on the technique's performance at each 

iteration. These non-nature-inspired algorithms do not guarantee to find the optimum solution, and 

they probably trap in the local optimum, they strive to avoid the generation of inadequate quality 

solutions. To keep focusing on the main objective of this study, the rest of this section is to review 

the popular related works in the category of nature-inspired algorithms.



Mother Nature, is the most significant problem solver, and it is the essential inspiring source to 

develop successful nature-inspired algorithms, which have been widely used for solving 

optimization problems (Zang et al., 2010). As shown in Fig. 1, in the literature (Del Ser et al., 2019; 

Mirjalili et al., 2016), these algorithms are classified into three categories: evolutionary, physics-

based, and swarm intelligence algorithms. Evolutionary algorithms (EAs) represent a class of 

iterative optimization algorithms that simulate the evolution processes in nature (Talbi, 2009). The 

best individuals are combined to form a new generation, which is the main strength of EAs as it 

promotes the improvement of the population over the course of iterations. The most popular 

evolutionary algorithms are genetic algorithm (GA) (Holland, 1992) that simulates the Darwinian 

evolution, differential evolution (DE) (Storn et al., 1997), genetic programming (GP) (Koza, 1997), 

and evolution strategy (ES) (Rechenberg, 1973). Among them, the DE algorithm and its variants 

(Meng et al., 2019; Meng et al., 2018; Ali W Mohamed et al., 2019; Ali Wagdy Mohamed, 2015) 

have emerged as one of the most competitive families of the EAs.

Physics-based algorithms mimic physical rules in nature in which the individuals communicate 

around the search space by using concepts and laws of physics such as gravitational force, inertia 

force, light refraction law, and molecular dynamics. Some popular algorithms in this category are 

big bang-big crunch (BB-BC) (Erol et al., 2006), gravitational search algorithm (GSA) (Rashedi et 

al., 2009), charged system search (CSS) (Kaveh et al., 2010), ray optimization (RO) (Kaveh et al., 

2012), black hole (BH) (Hatamlou, 2013), atom search optimization (ASO) (Zhao et al., 2019), and 

henry gas solubility optimization (Hashim et al., 2019).

Swarm intelligence algorithms (SIs) are inspired by the collective behavior of social creatures 

such as bird flocking, animal herding, and ants’ foraging. All individuals with cooperation and 

interaction, collectively move toward the promising areas in the search space. Some of the most 

well-known algorithms in this category are particle swarm intelligence (PSO) (Eberhart et al., 

1995), artificial bee colony (ABC) (Karaboga et al., 2007), krill herd (KH) (Gandomi et al., 2012), 

grey wolf optimizer (GWO) (Mirjalili et al., 2014), whale optimization algorithm (WOA) (Mirjalili 

et al., 2016), crow search algorithm (CSA) (Askarzadeh, 2016), and harris hawks optimization 

(HHO) (Heidari et al., 2019). These algorithms have been widely used to solve continuous or 

discrete optimization problems (Chen et al., 2018; Faris et al., 2015; Thaher et al., 2020; Zamani et 

al., 2016a). 

Although SI algorithms have been proven effective while solving optimization problems, they 

may suffer from trapping in a local optimum, premature convergence, and loss of diversity in the 



solutions. Therefore, there have been proposed modified variations of SIs to tackle their 

weaknesses. The comprehensive learning particle swarm optimizer (CLPSO) (Liang et al., 2006) 

was proposed to exit from local optima, and the DEWCO (Elaziz et al., 2019) uses a hyper-heuristic 

for improving the initial population of WOA to increase its convergence speed. Also, the conscious 

neighborhood-based crow search algorithm (CCSA) (Zamani et al., 2019) strikes a balance between 

local and global search.

The grey wolf optimizer (GWO) was proposed in 2014 (Mirjalili et al., 2014), which is a 

population-based swarm intelligence algorithm that mimics the social hierarchy and the group 

hunting behavior of wolves. Due to its simplicity, employing fewer control parameters, and ease of 

implementation, GWO has been widely applied to solve different optimization problems such as 

parameters estimation (Mirjalili, 2015; X. Song et al., 2015), economic dispatch (Jayabarathi et al., 

2016; Pradhan et al., 2016), unit commitment (Kamboj, 2016; Panwar et al., 2018), pattern 

recognition (Katarya et al., 2018), feature selection (Emary et al., 2015; Tu et al., 2019b), wind 

speed forecasting (J. Song et al., 2018), and optimal power flow (El-Fergany et al., 2015; Sulaiman 

et al., 2015). 

Since the introduction of GWO in 2014, as shown in Fig. 1, a number of variants of the basic 

GWO algorithm have been proposed to overcome GWO’s deficiencies and provide better 

performance. Saremi et al. (Saremi et al., 2015), proposed GWO-EPD by integrating the 

evolutionary population dynamics (EPD) operator and the canonical GWO algorithm. The EPD is 

used to remove the worst solutions and reposition them around the three best solutions of the 

population. However, it has premature convergence and loss of diversity, especially on hybrid and 

composition problems. Malik et al. (Malik et al., 2015), proposed the wdGWO algorithm, in which 

a weighted average of best solutions is computed instead of a simple arithmetic average. Jayabarathi 

et al. (Jayabarathi et al., 2016) introduced HGWO to solve the economic dispatch problem by using 

the mutation and crossover operators in GWO. It shows good performance to solve the constrained 

nonconvex problem, although it does not strike a proper balance between exploration and 

exploitation for solving composition functions. Saxena et al. presented E-GWO (Saxena et al., 

2020), which uses a sinusoidal bridging mechanism in conjunction with tournament selection, 

crossover, and mutation. It shows a better exploration ability for landscapes with many local optima, 

but weak exploitation in unimodal problems and imbalanced exploration and exploitation in hybrid 

functions are still its major problems.



A number of GWO variants have been developed to avoid the local optima and accelerate 

convergence speed by modifying the mechanism of GWO.  Mittal et al. (Mittal et al., 2016) 

proposed mGWO based on a nonlinear control parameter strategy, which focuses on a proper 

balance between exploration and exploitation. The movement strategy of mGWO is inherited from 

the GWO algorithm, so the algorithm might suggest from entrapment in locally optimal solutions 

and premature convergence.  In another study, QOGWO (Guha et al., 2016), the quasi-oppositional 

based learning (Q-OBL) theory was integrated into the conventional GWO. Long et al. (Long et al., 

2018) proposed  EEGWO, in which the position updating mechanism of this algorithm was 

modified once again to alleviate its drawbacks. However, trapping in the local optima and premature 

convergence are still its major problems. Long et al. (Long et al., 2019) proposed ROL-GWO by a 

modified parameter C, which increased the exploration of the algorithm.

Singh et al. (Singh et al., 2017) proposed HGWOSCA, which benefit from the hybridization of 

GWO and SCA. The global convergence and also exploitation ability for the unimodal problems 

were improved, but its weak ability in the exploration for multimodal functions and also the balance 

for the composition functions remain. In another study, Gaidhane et al. (Gaidhane et al., 2018) 

proposed a GWO-ABC that uses the advantages of GWO and artificial bee colony (ABC). In this 

algorithm, the information sharing property of ABC is hybridized by the original hunting strategy 

of GWO to improve the exploration ability. Alomoush et al. (Alomoush et al., 2019) proposed a 

hybrid harmony search and GWO named GWO-HS with an opposition learning strategy to solve 

global optimization problems.



3. GREY WOLF OPTIMIZER (GWO)

The grey wolf optimizer (GWO) algorithm is inspired by the social leadership and hunting 

behavior of grey wolves in nature. The GWO algorithm considers three leader wolves named α, 𝛽, 

and δ as the best solutions to lead the rest of the wolves named ω wolves toward promising areas in 

order to find the global solution. The wolf hunting consists of three main steps: encircling, hunting, 

and attacking the prey.

- Encircling: Encircling the prey by the grey wolves can be modeled, as shown in Eqs. (1) and 

(2).

)()( tXtpXCD  (1)

DAtXtX p  )()1( (2)

Where Xp is the prey position, X indicates the position vector of a grey wolf, t is the current 

iteration. C and A are the coefficient vectors calculated by Eqs. (3) and (4).

Fig. 1. The classification of nature-inspired algorithms emphasized on the GWO algorithm. 
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Where r1, r2 are random vectors in [0,1], and the elements of the vector a are linearly decrease 

from 2 to 0 over the course of iterations by Eq. (5). 
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- Hunting: To mathematically model wolves’ hunting behavior, it is assumed that α, 𝛽, and δ 

have better knowledge about the location of the prey. Therefore, by considering the position of the 

three best solutions α, 𝛽, and δ, the other wolves ω are obliged to follow them. The following Eqs. 

(6-8) are described the hunting behavior.
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Where C1, C2, and C3 are calculated by Eq. (4).
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Where Xα, X𝛽, and Xδ are the first three best solutions at iteration t, A1, A2, and A3 are calculated 

as in Eq. (3), and Dα, D𝛽, and Dδ are defined as Eq. (6).

3
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- Attacking: The hunting process is terminated when the prey stops moving, and wolves start an 

attack. This can be done mathematically by the value of a which is linearly decreased over the curse 

of iterations controlling the exploration and exploitation. As shown in Eq. (5), it is updated in each 

iteration to range from 2 to 0. According to (Emary et al., 2017), half of the iterations are dedicated 

to the exploration, and with a smooth transition, the other half is assigned to exploitation. In this 

step, wolves change their positions to any random position between the prey position and their 

current position. 

Detailed flowchart of the GWO algorithm is shown in Fig. 2. The algorithm starts by randomly 

generating an initial population of wolves within the search space. The fitness function evaluates 

the wolves’ positions. Then the following steps are repeated until the stopping criterion is satisfied. 

The stopping criterion is to reach the predefined number of iterations (Maxiter). In each iteration, 

the three first wolves with the best finesses are considered as α, 𝛽, and δ. After that, each wolf 



updates its position with respect to the aforementioned steps encircling, hunting, and attacking the 

prey. Finally, by repeating these steps, the best location of the prey, which is the α’s position, can 

be located. 

Although GWO is simple and applicable for several applications, it suffers from lack of 

population diversity, the imbalance between the exploitation and exploration, and the premature 

convergence (Heidari et al., 2017; Long et al., 2018; Lu et al., 2018; Tu et al., 2019a). Furthermore, 

the position update equation of the GWO is good at exploitation, but it is not sufficient for obtaining 

a feasible solution.

4. IMPROVED GREY WOLF OPTIMIZER (I-GWO)

In GWO, α, 𝛽, and δ lead ω wolves toward the areas of the search space that are promising for 

finding the optimal solution. This behavior may lead to entrapment in locally optimal solution. 

Another side-effect is the reduction of the diversity of the population and cause GWO to fall into 

the local optimum. To overcome these issues, in this section, an improved grey wolf optimizer (I-

GWO) is proposed. The improvements include a new search strategy associated by selecting and 

Fig. 2. The flowchart of the GWO algorithm.



updating step, which are indicated in the dashed line border in the flowchart of I-GWO shown in 

Fig. 3. Then, the I-GWO includes three phases: initializing, movement, and selecting and updating 

as follows.

Initializing phase: In this phase, N wolves are randomly distributed in the search space in a given 

range [li, uj] by Eq. (9). 

],1[],,1[),(]1,0[ DjNilurandlX jjjjij  (9)

The position of the i-th wolf in the t-th iteration is represented as a vector of real values Xi(t) = 

{xi1, xi2, …, xiD}, where D is the dimension number of the problem. The whole population of wolves 

is stored in a matrix Pop, which has N rows and D columns. The fitness value of Xi (t) is calculated 

by the fitness function, f (Xi (t)).

Movement phase: In addition to group hunting, individual hunting is another interesting social 

behavior of grey wolves (MacNulty et al., 2007), which is our motivation to improve the GWO. 

The I-GWO incorporates an additional movement strategy named dimension learning-based 

hunting (DLH) search strategy. In DLH, each individual wolf is learned by its neighbors to be 

another candidate for the new position of Xi (t). The following steps describe how canonical GWO 

and DLH search strategies generate two different candidates. 

The canonical GWO search strategy: As described in Section 3, in GWO, the first three best 

wolves from Pop are considered as α, 𝛽, and δ. After that, the linearly decreased coefficient a, and 

coefficients A and C are calculated by Eqs. (3-5). Then, the prey encircling is determined by 

considering the position of Xα, X𝛽, and Xδ by Eqs. (6 and 7). Finally, the first candidate for the new 

position of wolf Xi (t) named Xi-GWO (t+1) is calculated by Eq. (8).

Dimension learning-based hunting (DLH) search strategy: In the original GWO, for each wolf, 

a new position is generated with the help of three leader wolves of the Pop. This way causes that 

GWO shows slow convergence, the population loses diversity too early, and wolves are trapped in 

the local optima. To tackle these defects, in the proposed DLH search strategy, individual hunting 

of wolves is considered that is learned by its neighbors. 

In the DLH search strategy, each dimension of the new position of wolf Xi (t) is calculated by 

Eq. (12) in which this individual wolf is learned by its different neighbors and a randomly selected 

wolf from Pop. Then, besides Xi-GWO (t+1), the DLH search strategy generates another candidate 

for the new position of wolf Xi (t) named Xi-DLH (t+1). For doing this, first, a radius Ri(t) is calculated 

using Euclidean distance between the current position of Xi (t) and the candidate position Xi-GWO 

(t+1) by Eq. (10).
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Then, the neighbors of Xi (t) denoted by Ni (t) is constructed by Eq. (11) respected to radius Ri 

(t), where Di is Euclidean distance between Xi (t) and Xj (t). 

  PoptXtRtXtXDtXtN jijiiji  )(),()(),(|)()( (11)

Once the neighborhood of Xi (t) is constructed, multi neighbors learning is performed by Eq. 

(12) where the d-th dimension of Xi-DLH,d (t+1) is calculated by using the d-th dimension of a random 

neighbor Xn,d (t) selected from Ni (t), and a random wolf Xr,d (t) from Pop.

))()(()()1( ,,,, tXtXrandtXtX drdndidDLHi  (12)

 Selecting and updating phase: In this phase, first, the superior candidate is selected by comparing 

the fitness values of two candidates Xi-GWO (t+1) and Xi-DLH (t+1) by Eq. (13).
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Then, in order to update the new position of Xi (t+1), if the fitness value of the selected candidate 

is less than Xi (t), Xi (t) is updated by the selected candidate. Otherwise, Xi (t) remains unchanged 

in the Pop.

Finally, after performing this procedure for all individuals, the counter of iterations (iter) is 

increased by one, and search can be iterated until the predefined number of iterations (Maxiter) is 

reached. The pseudo-code of the proposed I-GWO algorithm is shown in Fig. 4.



Algorithm 1: The Improved grey wolf optimizer algorithm (I-GWO)

Fig. 3. The flowchart of the I-GWO algorithm.



Fig. 4. The pseudo code of I-GWO.

5. Experimental Evaluation and Results

In this section, the performance of the proposed I-GWO algorithm is evaluated over several test 

functions by various experiments.

5.1 Benchmark Functions and Experimental Environment

The performance evaluation of the I-GWO was conducted by CEC 2018 benchmark suite that 

contains 29 test functions (Awad et al.). These test functions include: unimodal (F1, F3), multimodal 

(F4-F10), hybrid (F11-F20), and composition (F21-F30) functions. All benchmark functions were 

evaluated with different dimensions of 10, 30, and 50 by 20 independent runs. In each run, the 

maximum iterations (MaxIter) was set by (D×10000)/N, where D and N are the dimensions of the 

problem and the population size. The value of N was set to 100, respectively.

All experiments were performed on a CPU, Intel Core(TM) i7-3770 3.4GHz and 8.00 GB RAM, 

and Matlab R2018a was used for programming. The results are reported based on the fitness 

discrepancy (error), f – f* where f is the optimization result obtained by the corresponding algorithm, 

and f* is the global optimum. The mean and standard deviation of fitness error were employed to 

measure the performance of the algorithms. The experimental results are shown in Tables 2-5, in 

which the bold values show the best-obtained solutions. Moreover, the last three rows of each table 

denoted “w/t/l” indicate the number of wins (w), ties (t), and losses (l) of each algorithm.

Input: N, D, Maxiter
Output: The global optimum 

1 : Begin  
2 : Initializing (Randomly distributing N wolves in the search space and calculating their fitness).
3 : For iter = 2 to Maxiter 
4 : Find Xα, X𝛽, and Xδ.
5 :  For i = 1 to N
6 : Computing  Xi1,  Xi2, Xi3 by using Eq. (7).
7 : Computing Xi-GWO (t+1) by using Eq. (8).
8 : Calculating Ri (t) by Eq. (10).
9 : Constructing neighborhood Xi (t) with radius Ri by Eq. (11).
10 : For d = 1 to D
11 :        Xi-DLH,d (t+1) = Xi,d (t) + rand × (Xn,d (t) - Xr,d (t))
12 : End for
13 : Selecting best (Xi-GWO (t+1), Xi-DLH (t+1)).
14 : Updating Pop.
15 : End for
16 : End for
17 : Return the global optimum.
18 : End 



The results of the I-GWO are compared with the state-of-the-art metaheuristic algorithms: PSO 

(Eberhart et al., 1995), KH (Gandomi et al., 2012), GWO (Mirjalili et al., 2014), WOA (Mirjalili et 

al., 2016), EEGWO (Long et al., 2018), and HGSO (Hashim et al., 2019). As shown in Table 1, in 

all experiments, the parameters of the comparative algorithms were the same as the recommended 

settings in their original works.

5.2 Exploration and Exploitation Evaluation

The unimodal test functions are suitable for verifying the exploitation ability to find the optimal 

solution. On the other hand, the multimodal functions with many local minima can test the ability 

of the I-GWO in the exploration and also in the local optima avoidance.

Inspecting the results in Table 2, it is evident that the I-GWO algorithm is able to provide very 

competitive results on unimodal test functions, especially significantly showed improved results on 

F3 for all dimensions. Therefore, it can be concluded that the I-GWO algorithm exploits around the 

optimum solution more effective than the GWO. According to the results reported in Table 3, I-

GWO can provide superior results on the multimodal functions for different dimensions 10, 30, and 

50. The experiment is performed on F4-F10, in which the difficulty increases proportional to the 

number of dimensions. These results show that the proposed I-GWO algorithm is competitive in 

terms of exploration.

5.3 Evaluation of Local Optima Avoidance

As discussed above, multi-modal and composite test functions test the exploratory behavior of 

an algorithm. Therefore, the local optima avoidance of the I-GWO can be observed and 

demonstrated by applying it to such problems. Moreover, the balance between exploitation and 

exploration can concurrently be benchmarked by these functions.

Table 1. Parameters settings.
Algs Setting
PSO c1=c2=2
KH Vf=0.02, Dmax=0.005, Nmax=0.01
GWO a was linearly decreased from 2 to 0
WOA a = [2 0], b = 1
EEGWO b1=0.1, b2=0.9, µ=1.5, ainitial =2, afinal=0 

HGSO Cluster number=5, M1=0.1, M2=0.2, 
α=𝛽=K=1, l1=0.005, l2=100, l3=0.01

I-GWO a was linearly decreased from 2 to 0



The results in Table 4 show that I-GWO is superior on all hybrid functions for three different 

dimensions 10, 30, and 50. Furthermore, Table 5 shows the obtained solutions for solving 

composition functions by I-GWO and other algorithms, where I-GWO outperforms all other 

algorithms. As the results demonstrate, I-GWO shows a good balance between exploration and 

exploitation that results in high local optima avoidance.

5.4 Convergence Evaluation

In the following experiments, the convergence behavior of I-GWO is evaluated and compared 

by the competitive algorithms. Fig. 5 shows the convergence curves over some selected functions 

of unimodal and multimodal functions, and Fig. 6 on hybrid and composition functions on 

dimensions 10, 30, and 50. In these figures, the convergence curves are plotted by the mean of the 

best solution in each iteration over 20 runs.

The curves show that the I-GWO has high fluctuations in the initial iterations and low variations 

in the last iterations. The descending trend of curves shows the wolves of the population are 

collaborating to improve results by updating their position to a better one as the iteration number 

increases. Then, in all curves, the I-GWO shows better convergence behavior, which can be 

concluded that it strikes a balance between the exploration and exploitation in the course of iteration 

more than the opponent algorithms.

Table 2. The comparison of obtained solutions for unimodal functions.

F D Index PSO
(1997)

KH
(2012)

GWO
(2014)

WOA
(2016)

EEGWO
(2018)

HGSO
(2019) I-GWO

Mean 4.9552E+08 4.8079E+02 4.3804E+06 2.3203E+05 1.1425E+10 5.6412E+08 3.6746E+0310
STD 1.7245E+08 5.1488E+02 1.1538E+07 4.3811E+05 2.0654E+09 2.5186E+08 1.8625E+03
Mean 1.5368E+10 1.5947E+04 8.4874E+08 3.2594E+06 5.9660E+10 1.5216E+10 3.3657E+0430
STD 1.8406E+09 1.4353E+04 7.7867E+08 2.3799E+06 4.5667E+09 3.2405E+09 1.0010E+04
Mean 3.7785E+10 2.3058E+05 4.0637E+09 9.7205E+06 1.1551E+11 3.9533E+10 2.4101E+03

F1

50
STD 3.8007E+09 1.7007E+05 2.1433E+09 1.1581E+07 4.5644E+09 8.5861E+09 1.1730E+03
Mean 3.0546E+03 9.0070E+02 5.0896E+02 2.1389E+02 1.4228E+04 7.3095E+02 7.4030E-0310
STD 7.4726E+02 1.1341E+03 1.9473E+03 2.5377E+02 2.7229E+03 3.0711E+02 2.6115E-03
Mean 4.9095E+04 4.5347E+04 2.8332E+04 1.6691E+05 8.8839E+04 3.8449E+04 3.3321E+0230
STD 5.5916E+03 1.4117E+04 8.0961E+03 7.7951E+04 4.8504E+03 7.1682E+03 1.5508E+02
Mean 1.0748E+05 1.1527E+05 6.5679E+04 7.4951E+04 1.4113E+06 1.3864E+05 2.4203E+03

F3

50
STD 1.9222E+04 2.2298E+04 1.5390E+04 2.9689E+04 3.1911E+06 8.3860E+03 1.4764E+03

Rank 10 w/t/l 0/0/2 1/0/1 0/0/2 0/0/2 0/0/2 0/0/2 1/0/1
30 w/t/l 0/0/2 1/0/1 0/0/2 0/0/2 0/0/2 0/0/2 1/0/1
50 w/t/l 0/0/2 0/0/2 0/0/2 0/0/2 0/0/2 0/0/2 2/0/0



Table 3. The comparison of obtained solutions for multimodal functions.

F D Index PSO
(1997)

KH
(2012)

GWO
(2014)

WOA
(2016)

EEGWO
(2018)

HGSO
(2019) I-GWO

Mean 4.1550E+01 5.9099E+00 1.5966E+01 2.2290E+01 1.1517E+03 4.6494E+01 2.0588E+0010
STD 7.5025E+00 2.4220E+00 1.9469E+01 3.5023E+01 4.0231E+02 1.2794E+01 5.1591E-01
Mean 9.0785E+02 9.8725E+01 1.4472E+02 1.5935E+02 1.8550E+04 1.6256E+03 8.6678E+0130
STD 1.5718E+02 2.0332E+01 3.1260E+01 4.2152E+01 2.8135E+03 4.4775E+02 3.5732E+00
Mean 3.3841E+03 1.5434E+02 4.1183E+02 2.8050E+02 3.9474E+04 7.7108E+03 9.7619E+01

F4

50
STD 4.2116E+02 5.0563E+01 1.6721E+02 5.5343E+01 2.7136E+03 1.7846E+03 2.7134E+01
Mean 3.4883E+01 2.6914E+01 1.3829E+01 4.8430E+01 1.2171E+02 4.9689E+01 1.1319E+0110
STD 2.8317E+00 7.1345E+00 8.1265E+00 1.4771E+01 1.1238E+01 5.3829E+00 5.8106E+00
Mean 2.5382E+02 1.3714E+02 9.1704E+01 2.6365E+02 4.6764E+02 3.0625E+02 5.2225E+0130
STD 1.9973E+01 3.1379E+01 3.3006E+01 5.4562E+01 1.7271E+01 1.7137E+01 4.7202E+01
Mean 5.3118E+02 2.5648E+02 1.8244E+02 4.0646E+02 7.4489E+02 5.4451E+02 6.6577E+01

F5

50
STD 1.7559E+01 3.1050E+01 3.7258E+01 7.6040E+01 2.6318E+01 2.8022E+01 1.6360E+01
Mean 1.8545E+01 5.4033E+00 1.7018E-01 2.5601E+01 6.6527E+01 2.4253E+01 2.9214E-0210
STD 1.5853E+00 6.8054E+00 2.1016E-01 1.2741E+01 5.4502E+00 4.3041E+00 6.6504E-03
Mean 4.0878E+01 3.5478E+01 4.0997E+00 6.6469E+01 1.0399E+02 6.4811E+01 6.7371E-0230
STD 2.7951E+00 9.0552E+00 1.8595E+00 8.9686E+00 5.0750E+00 6.3506E+00 8.9037E-03
Mean 5.3056E+01 5.1336E+01 1.0505E+01 7.6778E+01 1.1476E+02 8.2391E+01 7.1289E-02

F6

50
STD 3.6735E+00 6.4554E+00 3.9121E+00 9.8048E+00 3.0641E+00 4.7383E+00 9.9378E-03
Mean 1.2052E+02 2.1001E+01 2.6981E+01 7.4922E+01 1.4219E+02 6.6314E+01 2.2449E+0110
STD 1.1907E+01 5.3417E+00 7.0974E+00 2.3504E+01 9.3820E+00 7.3019E+00 6.8446E+00
Mean 8.2739E+02 1.3260E+02 1.2569E+02 4.8959E+02 7.5997E+02 4.0094E+02 1.1676E+0230
STD 9.6812E+01 2.6368E+01 3.1442E+01 1.0447E+02 4.0096E+01 3.3183E+01 5.8790E+01
Mean 2.0107E+03 3.6249E+02 3.3471E+02 9.9487E+02 1.3834E+03 8.2904E+02 1.3793E+02

F7

50
STD 2.5031E+02 5.6609E+01 8.5908E+01 7.3579E+01 4.1122E+01 6.4260E+01 5.4672E+01
Mean 4.5376E+01 1.6318E+01 1.2545E+01 4.0125E+01 7.1595E+01 3.2076E+01 6.7485E+0010
STD 7.4496E+00 6.9565E+00 6.2583E+00 2.1323E+01 6.0356E+00 3.3007E+00 5.1040E+00
Mean 2.6495E+02 1.0871E+02 7.6365E+01 2.0831E+02 3.7925E+02 2.5330E+02 3.5734E+0130
STD 1.2979E+01 1.6888E+01 1.4647E+01 4.7504E+01 1.8265E+01 1.3562E+01 3.2362E+01
Mean 5.2527E+02 2.8378E+02 1.9575E+02 4.1536E+02 7.6900E+02 5.7140E+02 5.8658E+01

F8

50
STD 1.8131E+01 4.7747E+01 3.1627E+01 7.3544E+01 2.1590E+01 2.7480E+01 1.0278E+01
Mean 3.4584E+02 8.5193E+00 2.2349E+00 4.7914E+02 1.0849E+03 9.7986E+01 7.3741E-0410
STD 8.8971E+01 2.2798E+01 4.2107E+00 3.5934E+02 2.3980E+02 2.4342E+01 3.6844E-04
Mean 5.0939E+03 2.3082E+03 5.4051E+02 5.9263E+03 1.2726E+04 4.9770E+03 9.1159E-0230
STD 5.1996E+02 6.6176E+02 4.4070E+02 1.9896E+03 1.0372E+03 9.9041E+02 4.3756E-02
Mean 1.3578E+04 9.4078E+03 4.5701E+03 1.9529E+04 4.4149E+04 2.6082E+04 3.3338E-01

F9

50
STD 1.2870E+03 1.3620E+03 3.2583E+03 4.9687E+03 2.7749E+03 2.0188E+03 1.1790E-01
Mean 1.1999E+03 9.9351E+02 5.3932E+02 1.0556E+03 2.3242E+03 1.3586E+03 8.5738E+0110
STD 1.7606E+02 2.8832E+02 1.9411E+02 2.9700E+02 1.6881E+02 1.8230E+02 8.7926E+01
Mean 6.9815E+03 4.0559E+03 2.8508E+03 5.2298E+03 8.4006E+03 5.7170E+03 4.0107E+0330
STD 1.9678E+02 4.3583E+02 5.5476E+02 6.3974E+02 4.6515E+02 3.4356E+02 2.2022E+03
Mean 1.3403E+04 6.6518E+03 5.6339E+03 9.0709E+03 1.5377E+04 1.1703E+04 5.8217E+03

F10

50
STD 5.1086E+02 8.5488E+02 6.9439E+02 1.3014E+03 3.6916E+02 6.8363E+02 3.6995E+03

Rank 10 w/t/l 0/0/7 1/0/6 0/0/7 0/0/7 0/0/7 0/0/7 6/0/1
30 w/t/l 0/0/7 0/0/7 1/0/6 0/0/7 0/0/7 0/0/7 6/0/1
50 w/t/l 0/0/7 0/0/7 1/0/6 0/0/7 0/0/7 0/0/7 6/0/1



Table 4. The comparison of obtained solutions for hybrid functions.
F D Index PSO

(1997)
KH

(2012)
GWO
(2014)

WOA
(2016)

EEGWO
(2018)

HGSO
(2019) I-GWO

Mean 1.4001E+02 4.0922E+01 2.2286E+01 1.0023E+02 3.4725E+03 1.3039E+02 1.9082E+0010
STD 4.3362E+01 2.3029E+01 1.2791E+01 5.8982E+01 2.1210E+03 4.4290E+01 9.3551E-01
Mean 1.6835E+07 1.0974E+06 9.1104E+05 2.5032E+06 7.6811E+08 6.4785E+06 7.0127E+0330
STD 8.2779E+06 9.3630E+05 1.8098E+06 2.6979E+06 4.0856E+08 2.9613E+06 3.7513E+03
Mean 5.4664E+04 9.7718E+03 9.7509E+03 1.4700E+04 3.3990E+07 1.6699E+04 3.6799E+02

F11

50
STD 4.5698E+04 6.4749E+03 6.5840E+03 1.1075E+04 2.7177E+07 8.3235E+03 1.1089E+02
Mean 1.2424E+02 8.0174E+02 9.8408E+02 1.8732E+02 1.4020E+05 5.3937E+02 4.0000E+0110
STD 3.1936E+01 1.4209E+03 1.6069E+03 1.7130E+02 2.4240E+05 5.4248E+02 4.9872E+00
Mean 9.9546E+02 2.9681E+03 1.4771E+03 2.7740E+03 7.7473E+04 2.3338E+03 1.7248E+0130
STD 9.2609E+02 3.4791E+03 1.7152E+03 3.4991E+03 1.1742E+05 1.2329E+03 6.3856E+00
Mean 8.0013E+01 3.1772E+02 4.4638E+01 2.0043E+02 7.0614E+02 2.1346E+02 2.6329E+00

F12

50
STD 3.5258E+01 1.2186E+02 3.9803E+01 1.4516E+02 1.2800E+02 6.2532E+01 1.1602E+00
Mean 8.1247E+01 5.7146E+01 5.1096E+01 9.0137E+01 2.3281E+02 7.2962E+01 3.2255E+0110
STD 9.8471E+00 1.5988E+01 2.6040E+01 4.3818E+01 6.8609E+01 7.0434E+00 3.8678E+00
Mean 5.1792E+04 9.3726E+03 2.6070E+04 1.8298E+04 2.9406E+08 2.0660E+05 1.1351E+0330
STD 4.4385E+04 7.8346E+03 1.5208E+04 1.3315E+04 2.2101E+08 1.6105E+05 7.8059E+02
Mean 5.0106E+02 1.2508E+03 2.2156E+03 1.4674E+04 5.0464E+06 4.1782E+03 1.8170E+01

F13

50
STD 3.4457E+02 2.0934E+03 4.4939E+03 1.4334E+04 5.8048E+06 3.5407E+03 4.2825E+00
Mean 8.7894E+01 1.3709E+02 5.8560E+01 1.1318E+02 3.3494E+02 1.1526E+02 2.1170E+0110
STD 1.6203E+01 7.0946E+01 5.0893E+01 5.1960E+01 5.6744E+01 3.5694E+01 7.4368E+00
Mean 1.8339E+03 4.0186E+02 3.1822E+02 3.2385E+02 1.0672E+04 1.4416E+03 9.5843E+0030
STD 3.5158E+02 1.8390E+02 2.0078E+02 7.5186E+01 2.4161E+03 5.8356E+02 2.9359E+00
Mean 1.1599E+09 2.8276E+06 3.1509E+07 4.2886E+07 1.6558E+10 1.2722E+09 2.9215E+05

F14

50
STD 2.5929E+08 1.7654E+06 2.8507E+07 2.9422E+07 1.5347E+09 5.3240E+08 1.5523E+05
Mean 4.1458E+08 3.7432E+04 8.6219E+04 1.1017E+05 1.7070E+10 4.3619E+08 2.8438E+0410
STD 1.1488E+08 1.8027E+04 6.9184E+04 4.5900E+04 3.2409E+09 1.3734E+08 1.2312E+04
Mean 1.4824E+05 3.4480E+05 1.1374E+05 9.6327E+05 1.4347E+07 4.4603E+05 6.1402E+0230
STD 6.0811E+04 4.5784E+05 2.8220E+05 1.5151E+06 9.4128E+06 2.2081E+05 3.2728E+02
Mean 7.6400E+07 1.6365E+04 2.3397E+05 1.0406E+05 5.8632E+08 3.2849E+06 2.0521E+03

F15

50
STD 3.5243E+07 6.4037E+03 5.8191E+05 1.0358E+05 2.5159E+08 1.6386E+06 1.1282E+03
Mean 1.7507E+03 1.1560E+03 6.9067E+02 1.8136E+03 5.8074E+03 2.0956E+03 1.3953E+0210
STD 1.4589E+02 2.8099E+02 2.1689E+02 5.0735E+02 8.6662E+02 1.3463E+02 1.0998E+02
Mean 8.0540E+02 4.6158E+02 2.3266E+02 7.4875E+02 5.4397E+03 8.0765E+02 6.8159E+0130
STD 1.3590E+02 2.1256E+02 1.2344E+02 2.5902E+02 4.2328E+03 1.2894E+02 2.6880E+01
Mean 3.3126E+06 3.9365E+05 6.5272E+05 1.8884E+06 1.5449E+08 2.2317E+06 6.7323E+04

F16

50
STD 1.7577E+06 4.4470E+05 6.8499E+05 1.9841E+06 8.1917E+07 1.3974E+06 2.5864E+04
Mean 9.0888E+07 1.2013E+05 5.1055E+05 2.6078E+06 1.4092E+09 9.3449E+06 2.7343E+0310
STD 4.5084E+07 1.2779E+05 4.7986E+05 2.8071E+06 6.1333E+08 3.3162E+06 2.1585E+03
Mean 6.1882E+02 5.7612E+02 3.9264E+02 6.4772E+02 1.3288E+03 5.9116E+02 9.1121E+0130
STD 9.4183E+01 2.1705E+02 1.7362E+02 1.9879E+02 1.2914E+02 6.8158E+01 5.5552E+01
Mean 5.2347E+03 3.5616E+03 1.2273E+03 4.9999E+02 2.4395E+04 4.8893E+03 5.6194E+01

F17

50
STD 8.8606E+02 1.6932E+03 9.4525E+02 1.0180E+02 1.8045E+03 1.2530E+03 5.2159E+00
Mean 7.5466E+09 1.0633E+07 4.7401E+08 1.8504E+08 9.1981E+10 1.5669E+10 4.1449E+0610
STD 8.4065E+08 9.2502E+06 6.1872E+08 1.0098E+08 9.5207E+09 3.8922E+09 1.0876E+06
Mean 2.3524E+09 4.8033E+04 8.3780E+07 1.5515E+05 5.2758E+10 2.3606E+09 3.2714E+0430
STD 5.8351E+08 2.2937E+04 1.0390E+08 1.1176E+05 7.1395E+09 9.7418E+08 7.5405E+03
Mean 1.1125E+06 3.5533E+05 4.7498E+05 5.5527E+05 1.8688E+08 3.3990E+06 1.1876E+04

F18

50
STD 4.8884E+05 3.4115E+05 7.0945E+05 4.0930E+05 8.9725E+07 1.2786E+06 7.0563E+03
Mean 8.1842E+08 2.1156E+04 3.5922E+06 8.3442E+04 1.0452E+10 2.3107E+08 1.0755E+0410
STD 2.3455E+08 7.1365E+03 7.4502E+06 6.3157E+04 2.1011E+09 5.4977E+07 4.0019E+03
Mean 3.7921E+03 1.7398E+03 1.2685E+03 3.3390E+03 9.5715E+03 2.9663E+03 3.3612E+0230
STD 2.3905E+02 3.1262E+02 3.9197E+02 7.4499E+02 1.2196E+03 4.2387E+02 9.1931E+01
Mean 3.7743E+03 1.6385E+03 9.9761E+02 2.3952E+03 1.4241E+04 2.1140E+03 2.9335E+02

F19

50
STD 2.9998E+02 2.8177E+02 2.4768E+02 3.4685E+02 3.7662E+03 2.2858E+02 1.1301E+02
Mean 1.2796E+07 2.6213E+06 2.6971E+06 5.2563E+06 2.7328E+08 9.1165E+06 2.7002E+0510
STD 3.3769E+06 1.5811E+06 3.9582E+06 5.0881E+06 7.9547E+07 2.6029E+06 1.2415E+05
Mean 3.9738E+08 1.6615E+05 3.1386E+06 2.2840E+06 6.1205E+09 1.6702E+08 1.1622E+0430
STD 1.0841E+08 1.1796E+05 7.3260E+06 1.9068E+06 1.3312E+09 6.2864E+07 7.5368E+03
Mean 1.7928E+03 1.3268E+03 8.0327E+02 1.6588E+03 2.6333E+03 1.4016E+03 2.3013E+02

F20

50
STD 1.7961E+02 3.2515E+02 2.4705E+02 2.3094E+02 2.6268E+02 2.1354E+02 2.2358E+02

Rank 10 w/t/l 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 10/0/0
30 w/t/l 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 10/0/0
50 w/t/l 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 10/0/0



Table 5.  The comparison of obtained solutions for composition functions.

F D Index PSO
(1997)

KH
(2012)

GWO
(2014)

WOA
(2016)

EEGWO
(2018)

HGSO
(2019) I-GWO

10 Mean 2.1235E+02 1.2758E+02 2.0734E+02 2.0710E+02 3.0949E+02 1.5193E+02 1.2590E+02
STD 5.2750E+01 4.6902E+01 2.2944E+01 5.9152E+01 3.6292E+01 3.8124E+01 4.6003E+01

30 Mean 4.4529E+02 3.1221E+02 2.7619E+02 4.4932E+02 7.0984E+02 4.6696E+02 2.3172E+02
STD 1.1342E+01 2.1806E+01 3.2223E+01 6.4638E+01 4.6974E+01 2.4995E+01 2.7217E+01

50 Mean 7.0671E+02 4.3856E+02 3.7305E+02 7.5783E+02 1.2437E+03 8.2029E+02 2.6104E+02

F21

STD 1.4275E+01 3.3400E+01 2.6742E+01 9.7087E+01 8.3936E+01 3.3338E+01 7.1552E+00
10 Mean 1.9240E+02 9.4378E+01 1.0426E+02 1.1416E+02 1.0923E+03 1.8251E+02 9.2002E+01

STD 1.9585E+01 2.2969E+01 2.8976E+00 1.7460E+01 2.4214E+02 3.5601E+01 3.2905E+01
30 Mean 5.4983E+03 1.0039E+02 2.1293E+03 3.7227E+03 7.9868E+03 1.7244E+03 1.0014E+02

STD 2.5154E+03 5.0800E-01 1.5304E+03 2.2536E+03 4.0455E+02 3.6545E+02 2.5329E-02
50 Mean 1.3486E+04 8.2149E+03 6.1380E+03 9.6954E+03 1.5912E+04 9.2970E+03 5.2825E+03

F22

STD 4.1727E+02 9.2758E+02 6.9282E+02 1.2223E+03 5.5627E+02 2.4773E+03 4.6105E+03
10 Mean 3.3048E+02 3.3272E+02 3.1352E+02 3.4121E+02 5.0710E+02 3.6786E+02 3.0869E+02

STD 3.9686E+00 1.0414E+01 7.2011E+00 1.3550E+01 3.8294E+01 1.0516E+01 4.9282E+00
30 Mean 5.8921E+02 5.9042E+02 4.3866E+02 7.0604E+02 1.5455E+03 7.8511E+02 3.7246E+02

STD 1.1877E+01 5.5598E+01 3.9338E+01 7.4467E+01 1.9719E+02 4.7525E+01 1.0694E+01
50 Mean 9.4253E+02 1.0638E+03 6.2448E+02 1.2849E+03 2.7164E+03 1.3454E+03 4.7054E+02

F23

STD 1.3271E+01 1.0194E+02 3.6534E+01 1.5258E+02 2.4704E+02 1.2694E+02 1.4259E+01
10 Mean 3.5465E+02 2.6084E+02 3.4260E+02 3.1616E+02 5.2722E+02 1.6520E+02 3.2815E+02

STD 3.5670E+01 1.2152E+02 9.4487E+00 1.2169E+02 6.4627E+01 5.1764E+01 3.8067E+01
30 Mean 6.3573E+02 6.9887E+02 4.9881E+02 7.6078E+02 1.8179E+03 8.6643E+02 4.4879E+02

STD 9.4855E+00 7.2409E+01 4.5834E+01 8.5578E+01 1.6894E+02 6.2148E+01 2.7487E+01
50 Mean 9.4337E+02 1.2321E+03 6.9264E+02 1.2749E+03 3.1577E+03 1.5282E+03 5.8709E+02

F24

STD 1.5685E+01 1.4462E+02 6.5735E+01 1.3829E+02 3.0017E+02 1.1764E+02 8.5068E+01
10 Mean 4.6391E+02 4.2856E+02 4.3590E+02 4.4375E+02 9.9501E+02 4.4958E+02 3.9786E+02

STD 9.5074E+00 2.2570E+01 1.5001E+01 3.1465E+01 1.0784E+02 1.1351E+01 1.7144E-01
30 Mean 1.3111E+03 4.1950E+02 4.4925E+02 4.4409E+02 3.2724E+03 8.2023E+02 3.8596E+02

STD 1.3594E+02 2.0789E+01 3.1003E+01 2.9979E+01 4.7606E+02 6.4810E+01 1.3491E+00
50 Mean 3.3946E+03 5.9059E+02 8.9866E+02 6.2678E+02 1.3464E+04 3.9382E+03 5.1391E+02

F25

STD 3.4851E+02 2.4181E+01 1.8009E+02 4.9376E+01 6.3205E+02 5.4780E+02 1.2911E+01
10 Mean 4.3303E+02 4.1323E+02 4.0041E+02 6.0399E+02 1.7182E+03 5.5437E+02 2.8520E+02

STD 6.9696E+01 2.8364E+02 2.9728E+02 3.5628E+02 2.9341E+02 6.2507E+01 6.6198E+01
30 Mean 3.8725E+03 3.2774E+03 1.8317E+03 4.7373E+03 9.4136E+03 4.4440E+03 1.0069E+03

STD 9.3254E+01 1.3916E+03 2.1218E+02 1.0434E+03 6.3189E+02 3.7227E+02 2.6527E+02
50 Mean 6.6182E+03 7.3964E+03 3.2515E+03 1.0668E+04 1.5377E+04 8.6352E+03 1.6239E+03

F26

STD 1.5700E+02 8.6871E+02 4.7688E+02 1.6055E+03 5.1076E+02 1.1106E+03 1.1502E+02
10 Mean 4.0397E+02 4.2650E+02 3.9377E+02 4.1310E+02 6.4793E+02 4.2209E+02 3.8941E+02

STD 1.4062E+00 2.6446E+01 2.8834E+00 2.4058E+01 9.1309E+01 1.2602E+01 2.0380E-01
30 Mean 6.1325E+02 7.0524E+02 5.4047E+02 6.4268E+02 2.5575E+03 5.0001E+02 4.8638E+02

STD 2.1085E+01 8.4027E+01 2.1716E+01 7.2930E+01 4.0392E+02 8.2260E-05 8.5949E+00
50 Mean 9.9588E+02 1.7002E+03 7.8897E+02 1.3721E+03 5.6369E+03 5.0001E+02 5.0297E+02

F27

STD 6.4300E+01 2.9619E+02 7.0112E+01 2.0665E+02 7.9640E+02 1.5976E-04 4.9578E+00
10 Mean 5.0817E+02 4.6049E+02 5.6252E+02 5.4985E+02 1.0772E+03 4.7703E+02 3.0009E+02

STD 1.1816E+02 1.4265E+02 9.0391E+01 1.7947E+02 1.2426E+02 5.2978E+01 2.0012E-02
30 Mean 1.0026E+03 4.4718E+02 5.5470E+02 4.9063E+02 5.0379E+03 9.1872E+02 4.0427E+02

STD 6.6812E+01 2.6603E+01 6.0837E+01 2.2024E+01 4.8607E+02 4.5633E+02 5.9014E+00
50 Mean 1.9208E+03 5.3987E+02 1.1505E+03 6.3395E+02 1.1573E+04 3.4582E+03 4.6069E+02

F28

STD 3.9314E+02 3.8710E+01 3.4736E+02 5.2765E+01 8.6756E+02 1.6013E+03 5.4326E-01
10 Mean 2.9147E+02 3.2573E+02 2.6670E+02 3.6804E+02 8.7217E+02 3.4429E+02 2.4973E+02

STD 2.1778E+01 5.0211E+01 3.8435E+01 6.8970E+01 9.1058E+01 2.1376E+01 7.0082E+00
30 Mean 1.5382E+03 1.2753E+03 7.9601E+02 1.9230E+03 6.1276E+03 1.3717E+03 4.5603E+02

STD 1.5525E+02 2.8062E+02 1.6964E+02 3.5050E+02 1.5196E+03 2.6198E+02 1.6780E+01
50 Mean 3.4773E+03 2.3968E+03 1.3255E+03 3.7718E+03 2.1121E+05 3.8380E+03 4.2848E+02

F29

STD 2.8301E+02 5.3119E+02 2.7462E+02 8.3557E+02 1.3309E+05 1.1030E+03 3.6958E+01
10 Mean 9.2521E+05 1.0423E+06 6.7964E+05 2.8394E+05 4.8238E+07 5.5263E+04 1.7953E+03

STD 9.7081E+05 1.6396E+06 8.1531E+05 4.2661E+05 2.6499E+07 1.0962E+05 6.0940E+02
30 Mean 5.2766E+07 1.9137E+06 4.9767E+06 9.9049E+06 2.3309E+09 7.4541E+07 1.9199E+04

STD 1.9307E+07 1.4899E+06 4.9154E+06 6.4555E+06 8.4450E+08 1.9778E+07 4.0941E+03
50 Mean 7.1365E+08 4.4754E+07 7.5521E+07 8.8362E+07 9.5078E+09 5.8408E+08 1.0089E+06

F30

STD 1.9544E+08 2.1263E+07 2.1339E+07 2.9338E+07 1.8309E+09 1.3743E+08 1.0281E+05
Rank 10 w/t/l 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 1/0/9 9/0/1

30 w/t/l 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 10/0/0
50 w/t/l 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 1/0/9 9/0/1



Fig. 5. The convergence curves of unimodal and multimodal functions with different dimensions. 



Fig. 6. The convergence curves of hybrid and composition functions with different dimensions.



Table 6 summarizes all performance results of I-GWO and other algorithms shown in Tables 2-

5 by a useful metric named overall effectiveness (OE). The OE of each algorithm is computed by 

Eq. (14), where N is the total number of tests, and L is the total number of losing tests for each 

algorithm.  

Overall Effectiveness (OE)=((N-L)/N)*100 (14)

5.5 Statistical analysis

Although the obtained results from the experimental evaluation show that the I-GWO algorithm 

outperforms the comparative algorithms, the rank of the algorithms in these experiments is not 

determined.  Therefore, Friedman and mean absolute error (MAE) tests are conducted to prove the 

superiority of I-GWO.

5.5.1 Non-parametric Friedman test

In the first statistical test, the Friedman test (Ff) (Derrac et al., 2011) is used for ranking I-GWO 

and other algorithms based on their obtained fitness using Eq. 15 where k is the number of 

algorithms, Rj is the mean rank of the j-th algorithm, n is the number of case tests. The test is 

performed by assuming χ2 distribution with k-1 degrees of freedom. It first finds the rank of 

algorithms individually and then calculates the average rank to get the final rank of each algorithm 

for the considered problem.

𝐹𝑓 =  
12𝑛

𝑘(𝑘 + 1)[∑
𝑗

𝑅2
𝑗 ―

𝑘(𝑘 + 1)2

4 ] (15)

Inspecting the results in Table 7, it is evident that the I-GWO algorithm significantly differs from 

other algorithms on the majority of test functions. The overall rank shows that our I-GWO algorithm 

is better than other algorithms for all dimensions 10, 30, and 50. 

Table 6 Overall Effectiveness of the I-GWO and other state-of-the-art competitor algorithms.
PSO

(w/t/l)
KH

(w/t/l)
GWO
(w/t/l)

WOA
(w/t/l)

EEGWO
(w/t/l)

HGSO
(w/t/l)

I-GWO
(w/t/l)

D=10 0/0/29 2/0/27 0/0/29 0/0/29 0/0/29 0/0/29 27/0/2
D=30 0/0/29 1/0/28 1/0/28 0/0/29 0/0/29 0/0/29 27/0/2
D=50 0/0/29 0/0/29 1/0/28 0/0/29 0/0/29 0/0/29 28/0/1
Total 0/0/87 3/0/84 2/0/85 0/0/87 0/0/87 0/0/87 82/0/5
OE 0% 3.4% 2.2% 0% 0% 0% 94.2%



Table 7. Overall rank by Friedman test in dimension D = 11, 30, and 50.
Alg. D F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

10 5.40 5.85 5.10 4.00 4.40 6.05 5.65 5.45 4.75 5.25 5.75 5.50 3.65 3.15 3.20 4.95

30 5.50 4.50 5.00 4.45 3.75 6.70 5.60 4.85 6.00 5.80 5.60 5.45 3.60 6.00 4.55 4.95PSO
50 5.45 4.40 5.00 5.25 3.70 7.00 5.05 3.95 5.95 5.40 5.00 5.60 4.55 6.00 5.60 6.00

10 1.00 4.15 2.55 3.00 2.90 1.70 2.60 1.80 3.65 2.95 3.05 3.35 4.10 4.55 5.50 3.00

30 1.20 4.05 1.80 2.75 3.25 2.20 2.80 3.15 2.60 3.40 2.00 2.00 4.15 2.10 3.05 3.05KH
50 1.00 4.55 1.10 2.80 3.30 2.35 2.95 3.00 2.75 4.10 1.05 1.05 2.30 1.10 2.80 3.10

10 3.30 2.55 3.55 1.85 2.10 2.40 2.30 2.80 2.20 2.40 2.55 3.00 3.30 3.35 2.45 2.80

30 4.00 2.45 3.25 1.90 2.00 1.90 2.00 2.00 1.45 2.65 3.35 3.00 2.45 3.30 2.00 2.20GWO
50 3.55 2.00 3.30 1.65 1.50 1.80 1.45 1.57 1.75 2.50 3.15 3.15 2.30 3.10 1.60 1.52

10 3.70 2.90 3.25 5.20 5.20 4.70 4.85 5.60 4.00 4.25 3.65 3.80 3.75 4.30 4.10 4.70

30 3.00 6.60 3.55 4.80 5.50 4.85 4.30 5.25 3.75 3.05 3.60 3.65 4.65 3.65 4.65 4.70WOA
50 2.00 2.40 2.35 4.10 5.25 4.95 4.10 4.90 4.00 1.15 2.75 2.60 3.30 2.75 5.05 4.65

10 7.00 7.00 7.00 7.00 7.00 6.90 6.95 6.90 7.00 7.00 7.00 7.00 6.90 6.95 7.00 6.90

30 7.00 6.25 7.00 7.00 7.00 6.25 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00EEGWO
50 7.00 7.00 7.00 7.00 7.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

10 5.60 4.55 5.30 5.50 5.25 4.35 4.40 4.05 5.40 5.15 4.90 4.35 5.30 4.70 4.75 4.30

30 5.50 3.15 6.00 5.75 5.50 4.20 5.10 4.75 4.20 5.10 5.40 5.55 5.15 4.95 5.70 5.10HGSO
50 5.55 5.80 6.00 5.65 5.75 4.05 5.85 5.90 5.00 5.35 6.00 5.40 6.00 5.00 4.25 4.20

10 2.00 1.00 1.25 1.45 1.15 1.90 1.25 1.40 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.35

30 1.80 1.00 1.40 1.35 1.00 1.90 1.20 1.00 3.00 1.00 1.05 1.35 1.00 1.00 1.05 1.00I-GWO
50 3.45 1.85 3.25 1.55 1.50 1.85 1.60 1.68 1.55 2.50 3.05 3.20 2.55 3.05 1.70 1.52

FAlg.
F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Avg.
 Rank

Overall
Rank

10 4.60 3.35 3.80 4.95 5.60 3.50 5.20 5.55 3.90 3.75 4.05 3.45 5.20 4.66 6

30 5.15 5.95 4.60 4.65 5.30 3.55 3.15 6.00 3.80 4.45 5.55 4.60 5.15 4.97 6PSO
50 5.55 6.00 5.65 4.35 6.00 3.10 3.00 5.20 3.20 4.05 5.15 4.80 5.70 5.02 5

10 2.50 3.60 4.75 2.25 1.50 3.90 3.10 2.85 2.65 5.00 3.00 4.10 4.40 3.22 3

30 2.60 2.25 4.10 2.90 2.00 3.65 4.25 2.60 3.45 5.75 2.00 3.40 2.35 2.93 3KH
50 2.45 1.20 3.65 2.85 3.55 4.10 4.45 1.25 4.15 5.80 1.30 3.35 1.40 2.72 3

10 3.85 2.75 2.45 4.05 2.45 1.95 3.60 3.05 2.75 2.10 4.85 2.15 4.00 2.86 2

30 2.70 2.90 2.40 1.95 4.10 2.00 2.00 3.30 2.20 3.10 4.25 2.20 3.10 2.62 2GWO
50 2.17 2.67 1.75 1.63 1.70 1.45 1.43 3.60 1.45 2.42 3.85 1.50 2.88 2.22 2

10 3.30 5.35 4.35 5.00 3.90 4.55 4.70 4.15 4.75 3.95 4.30 4.95 3.60 4.30 4

30 4.25 3.95 4.60 4.85 4.85 4.95 4.80 3.10 5.30 4.70 3.40 5.80 3.60 4.40 4WOA
50 3.65 3.30 4.75 5.00 4.25 5.15 4.75 1.75 5.85 5.15 2.10 4.95 3.15 3.80 4

10 7.00 7.00 7.00 6.80 7.00 7.00 6.75 7.00 7.00 7.00 6.95 7.00 7.00 6.97 7

30 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 6.95 7EEGWO
50 7.00 7.00 6.95 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 6.96 7

10 5.50 4.95 4.50 3.35 5.15 5.90 1.65 4.35 5.35 5.20 3.50 5.10 2.20 4.64 5

30 5.00 4.90 4.30 5.50 3.75 5.80 5.75 5.00 5.10 2.00 4.70 4.00 5.80 4.92 5HGSO
50 4.85 5.00 3.70 5.65 3.90 5.65 5.80 5.80 4.80 1.00 5.00 4.90 5.30 5.07 6

10 1.25 1.00 1.15 1.60 2.40 1.20 3.00 1.05 1.60 1.00 1.35 1.25 1.60 1.36 1

30 1.30 1.05 1.00 1.15 1.00 1.05 1.05 1.00 1.15 1.00 1.10 1.00 1.00 1.21 1I-GWO
50 2.33 2.83 1.55 1.52 1.60 1.55 1.57 3.40 1.55 2.58 3.60 1.50 2.58 2.21 1



5.5.2 Mean absolute error (MAE) test

The statistical mean absolute error (MAE) is a measure to show how far estimates are from the 

true values. It is computed by Eq. 16, where NF is the number of test functions, fi is the optimization 

result obtained by i-th function, and f* is its global optimum. 

𝑀𝐴𝐸 =  
1

𝑁𝐹

𝑁𝐹

∑
𝑖 = 1

|𝑓𝑖 ― 𝑓 ∗ | (16)

Table 8 indicates the mean of absolute errors between the global optimum and the results 

obtained by each algorithm for all test functions in different dimensions. The results show that the 

I-GWO algorithm has the smallest MAE, and it is the first rank and superior to other algorithms in 

all dimensions 10, 30, and 50.

Table 8. Mean absolute error in different dimensions.

D=10 D=30 D=50Algorithms
MAE Rank MAE Rank MAE Rank

PSO 7.45E+06 5 4.13E+08 6 1.36E+09 6
KH 3.19E+03 4 2.04E+04 2 7.44E+05 2
GWO 8.02E+02 2 1.51E+06 4 2.92E+07 4
WOA 9.31E+02 3 4.81E+05 3 3.04E+06 3
EEGWO 2.36E+08 7 2.54E+09 7 7.98E+09 7
HGSO 8.28E+06 6 3.96E+08 5 1.25E+09 5
I-GWO 2.10E+02 1 5.61E+03 1 9.66E+04 1

5.6 Impact analyses of DLH

In this experiment, the impact of our DLH search strategy on the performance of the GWO 

algorithm is analyzed. The results of these analyses are shown in Figs. 7 and 8 on four functions F1, 

F6, F18, and F26, each selected from different categories of CEC 2018. In I-GWO, first, for each 

wolf, a candidate solution is generated by the GWO search strategy. Then, by using the new 

candidate and the current position of the wolf, a neighbor around the Xi is created by Eqs. (10 and 

11). After that, by learning from the neighbors, another candidate position is created by the DLH 

search strategy. Finally, I-GWO selects each produced candidate position that has better fitness for 

the next iteration. To analyze the impact of the DLH search strategy in GWO, three algorithms 

GWO, DLH, and GWO+DLH (I-GWO) are developed and compared. 



Fig. 7 shows the best fitness of all wolves in each iteration on some selected functions CEC 2018 

different dimensions. As the curves shown in this figure, the obtained solutions by DLH are better 

than GWO for unimodal function F1 and the multimodal function F6, which shows the impact of 

using DLH in the exploitation and exploration. The DLH search strategy also can find better 

solutions for the hybrid function F18 and for the composition function F26, which need the balance 

between exploratory and exploitative searching behaviors. Although the proposed DLH can find the 

solutions, using both GWO and DLH has more benefits since the solutions obtained by I-GWO are 

always better than them.

In addition, in this experiment, the percent of improved solutions by DLH and GWO or their 

improved rate in each iteration for the same functions of the last experiment are shown in Figure 8. 

All curves of this figure show that the DLH search strategy has more effect on the optimization 

process, although, in some functions, GWO tends to perform better in the first iterations.



Fig. 7. The best fitness values obtained by GWO, DLH, and GWO+DLH (I-GWO).



Fig. 8. The rate of improved solutions by GWO and DLH search strategies.



6. Applicability of I-GWO for solving engineering problems 

In this section, the applicability of the I-GWO for solving the engineering problems is 

demonstrated by solving four problems described in the Appendix, including the pressure vessel 

design, the welded beam design, and the optimal power flow problems for IEEE 30-bus and IEEE 

118-bus systems. These problems have several equality and inequality constraints; therefore, I-

GWO should handle them during the optimization process. There are several strategies of constraint 

handling in the literature: rejecting, penalizing, repairing, decoding, and preserving (Talbi, 2009). 

The death penalty function used by the I-GWO is one of the simplest techniques among the different 

constraint handling strategies to handle the multi-constraint problems. This function assigns a large 

fitness value to those solutions that violate any of the constraints to discard the infeasible solutions. 

The results provided by I-GWO were evaluated and compared with other state-of-the-art algorithms 

for solving these problems. 

In the two first experiments, algorithms were run 10 times, and the swarm size (N) and maximum 

iterations (Maxiter) were set to 20 and (D×104)/N, respectively. Also, in the last two experiments, 

they set to 20, 50, and 200. The results obtained for the decision variables (DVs) and objective 

variables are reported in tables 9 to 13, which show that I-GWO, in comparison by other algorithms, 

provides a design with the best optimal values for these four engineering problems.

Table 9. Results for the pressure vessel problem.
Optimum values for DVs

Algorithms Ts Th R L
Optimum

Cost

PSO 0.883044 0.533053 45.38829 190.0616 7865.2330
KH 0.812418 0.405235 42.08876 177.4774 5975.5430
GWO 0.778709 0.386125 40.34139 199.711 5890.8880
WOA 0.795325 0.396759 40.7552 194.0239 5986.1040
EEGWO 13.09291 6.792196 42.09758 176.6495 6059.8704
HGSO 1.272354 0.624693 65.46899 10 7433.4480
I-GWO 0.779031 0.385501 40.36313 199.4017 5888.3400

Table 10. Results for the welded beam problem.
Optimum values for DVs

Algorithms h l t b
Optimum

Cost

PSO 0.189561 3.749106 9.31379 0.207391 1.798236
KH 0.150197 5.31408 9.045851 0.205745 1.861801
GWO 0.205409 3.478839 9.035941 0.205774 1.725700
WOA 0.189953 3.99627 8.71047 0.227041 1.871528



EEGWO 0.575855 1.713498 5.719196 0.796379 4.070917
HGSO 0.139093 5.738405 9.313378 0.207628 1.958934
I-GWO 0.20573 3.47049 9.036624 0.20573 1.724853

Table 11. Results for the optimal power flow problem using IEEE 30-bus test system.
Case 1 Case 2

DVs PSO KH GWO WOA EEGWO HGSO I-GWO PSO KH GWO WOA EEGWO HGSO I-GWO

PG1 (MW) 184.403 179.069 174.565 178.805 165.303 159.514 176.368 176.010 168.908 145.215 176.996 170.963 163.265 175.880

PG2 (MW) 53.294 48.886 48.246 43.572 53.426 38.226 48.847 46.558 46.522 58.991 39.732 36.317 44.769 47.738

PG5 (MW) 21.631 21.496 23.502 23.058 19.600 15.868 21.312 21.619 20.864 26.123 23.435 17.774 15.435 24.692

PG8 (MW) 12.305 18.035 19.791 20.004 27.992 32.980 21.778 18.394 23.554 30.949 17.597 15.389 21.369 21.003

PG11 (MW) 10.505 13.476 13.300 14.994 13.835 18.915 11.140 18.695 16.091 14.851 18.724 21.799 21.097 10.546

PG13 (MW) 12.000 12.000 12.970 12.000 12.853 26.126 12.599 12.000 16.993 15.191 16.712 31.234 26.831 13.295

VG1 (p.u.) 1.100 1.067 1.084 1.079 1.084 1.079 1.100 1.042 1.035 1.049 1.027 1.066 1.039 1.042

VG2 (p.u.) 1.070 1.051 1.066 1.059 1.051 1.069 1.086 1.029 1.013 1.033 1.014 1.049 1.034 1.022

VG5 (p.u.) 1.058 1.018 1.032 1.035 0.993 1.062 1.059 0.989 1.020 1.020 1.004 1.011 0.983 1.016

VG8 (p.u.) 1.030 1.018 1.035 1.035 1.025 1.048 1.069 0.985 1.001 1.000 1.012 0.977 1.002 1.002

VG11 (p.u.) 0.950 1.035 1.052 1.063 0.955 1.014 1.098 1.100 1.030 1.010 1.053 1.015 1.065 1.062

VG13 (p.u.) 1.026 1.069 1.040 1.038 1.038 1.003 1.097 0.998 1.040 1.003 1.010 1.013 0.977 0.999

T11(6-9) (p.u.) 1.100 0.997 0.989 1.019 1.069 1.041 0.967 1.039 0.971 0.997 0.981 0.916 0.995 1.071

T12(6-10) (p.u.) 0.900 0.988 1.086 0.994 1.061 0.971 1.040 0.902 0.961 0.913 0.944 0.903 1.008 0.901

T15(4-12) (p.u.) 0.900 1.031 1.000 1.021 0.932 0.975 1.024 0.935 0.987 0.948 0.986 1.062 0.916 0.945

T36(28-27) (p.u.) 0.999 0.953 0.997 1.015 1.008 1.071 0.996 0.972 0.964 0.958 0.957 0.966 0.967 0.957

QC10 (MVAR) 5.000 2.088 0.483 2.201 2.632 0.361 3.709 3.574 2.080 1.967 0.357 1.930 3.266 2.959

QC12 (MVAR) 0.200 2.723 1.222 3.965 0.099 3.068 3.517 0.000 2.281 1.557 0.584 2.458 0.712 1.796

QC15 (MVAR) 5.000 2.318 0.431 3.562 4.560 0.580 3.563 0.000 1.798 4.142 3.343 2.164 0.431 3.000

QC17 (MVAR) 5.000 3.261 2.215 4.597 4.581 2.570 3.369 2.754 2.483 2.464 4.523 4.959 0.356 2.412

QC20 (MVAR) 0.000 2.365 1.921 5.000 3.855 4.667 4.126 0.000 2.241 2.620 3.869 2.430 2.228 4.756

QC21 (MVAR) 4.078 2.352 3.730 1.875 4.433 4.109 3.520 3.471 2.423 4.097 0.603 2.866 1.933 3.547

QC23 (MVAR) 5.000 2.183 4.163 5.000 3.984 1.519 2.934 4.917 3.826 1.089 2.762 3.322 4.111 2.786

QC24 (MVAR) 0.000 3.006 2.905 5.000 2.116 3.849 4.201 0.182 2.852 4.178 2.537 1.973 0.712 4.169

QC29 (MVAR) 5.000 2.139 0.003 4.735 4.016 4.500 3.743 4.874 3.039 4.387 2.130 3.458 1.861 1.676

Cost ($/h) 805.291 802.027 801.617 801.817 806.621 815.906 799.340 805.459 806.285 812.395 808.216 823.047 816.400 804.640

Ploss (MW) 10.737 9.562 8.974 9.033 9.610 8.229 8.644 9.876 9.532 7.920 9.796 10.077 9.366 9.753

VD (p.u.) 0.413 0.371 0.387 0.468 0.530 0.534 1.407 0.215 0.162 0.146 0.159 0.295 0.348 0.118

 



Table 12. Results for the optimal power flow problem using IEEE 118-bus test system for Case 1.

DVs PSO KH GWO WOA EEGWO HGSO I-GWO DVs PSO KH GWO WOA EEGWO HGSO I-GWO DVs PSO KH GWO WOA EEGWO HGSO I-GWO

PG01 100.00 63.99 44.15 31.56 68.93 33.80 53.80 PG100 352.00 277.31 78.86 227.12 307.54 182.00 220.11 VG74 1.06 0.99 0.96 1.00 1.04 1.00 0.98

PG04 100.00 43.12 67.03 10.67 59.77 69.81 72.75 PG103 0.00 92.19 79.06 28.51 31.51 14.25 50.65 VG76 1.06 1.03 0.98 1.00 0.99 1.01 0.98

PG06 0.00 83.32 51.47 79.00 99.41 11.67 40.41 PG104 0.00 85.66 32.21 4.08 74.02 44.20 15.99 VG77 1.06 0.97 0.97 1.01 0.96 1.06 0.99

PG08 0.00 21.41 66.11 19.28 35.16 44.95 82.17 PG105 0.00 28.18 19.40 74.60 72.67 54.88 49.07 VG80 1.06 0.95 0.96 1.01 1.02 1.01 0.98

PG10 369.27 50.82 316.49 67.17 250.33 87.33 98.84 PG107 0.00 80.56 2.94 24.64 70.42 32.66 50.93 VG85 0.97 0.97 0.99 1.01 0.95 1.04 1.01

PG12 185.00 54.87 155.30 49.67 18.33 56.23 105.12 PG110 0.00 61.60 6.14 46.70 18.98 51.00 76.58 VG87 0.94 0.98 0.99 1.00 1.01 0.96 1.02

PG15 0.00 16.18 37.85 46.06 39.77 66.12 52.56 PG111 0.00 108.41 73.20 114.10 77.31 74.39 12.07 VG89 0.94 1.04 1.04 1.00 1.01 0.99 1.03

PG18 100.00 73.77 36.07 86.08 56.74 37.62 51.70 PG112 0.00 17.40 58.43 36.74 32.98 49.28 18.38 VG90 0.94 1.05 1.05 1.01 0.94 1.01 1.03

PG19 100.00 24.16 36.81 64.94 23.12 57.31 54.44 PG113 0.00 53.22 45.77 25.44 24.36 63.99 60.67 VG91 0.94 1.03 0.96 1.01 1.01 0.94 0.97

PG24 0.00 83.05 53.87 23.63 52.58 34.87 32.97 PG116 0.00 80.78 40.63 45.99 10.31 34.80 26.52 VG92 0.94 0.99 0.95 1.01 1.00 0.97 1.00

PG25 0.00 256.00 134.84 41.57 243.82 39.89 95.95 VG01 0.94 1.04 1.03 1.01 1.01 1.05 0.97 VG99 0.94 0.99 1.03 1.00 1.01 0.99 0.98

PG26 0.00 296.56 49.17 251.51 230.23 407.30 112.95 VG04 0.94 1.02 1.00 1.01 1.00 0.99 1.02 VG100 0.96 1.01 0.99 1.01 0.98 1.04 1.00

PG27 100.00 54.21 2.38 85.13 51.47 98.76 9.75 VG06 0.94 1.02 1.01 1.01 1.01 0.95 1.02 VG103 0.94 1.01 0.98 1.00 0.96 0.96 1.01

PG31 0.00 39.43 15.93 39.33 20.12 21.86 26.17 VG08 1.06 1.03 1.03 1.01 1.00 1.03 0.99 VG104 0.94 1.00 0.96 1.01 1.01 1.03 0.99

PG32 0.00 70.26 10.12 73.25 5.67 81.59 59.72 VG10 1.06 1.04 1.03 1.00 0.99 0.99 1.06 VG105 0.94 1.00 0.97 1.01 0.97 0.98 1.00

PG34 0.00 87.62 51.18 35.57 52.05 67.99 26.81 VG12 0.94 1.06 1.03 1.01 1.00 0.96 1.00 VG107 0.94 0.98 1.00 1.01 0.99 1.04 1.03

PG36 0.00 36.18 73.59 37.84 55.78 76.27 84.54 VG15 0.94 1.04 1.02 1.01 0.97 0.99 0.98 VG110 1.01 0.97 0.97 1.00 0.95 0.98 1.00

PG40 100.00 40.81 69.97 51.00 64.45 90.25 49.57 VG18 0.94 1.03 1.01 1.01 1.04 1.04 0.98 VG111 1.06 1.02 0.95 1.00 0.94 1.02 0.98

PG42 0.00 26.53 24.82 17.67 5.62 62.22 6.42 VG19 0.94 1.03 1.01 1.01 1.00 1.01 0.97 VG112 1.06 0.99 1.03 1.00 0.98 1.06 1.00

PG46 0.00 37.26 49.94 45.09 76.95 66.59 54.25 VG24 1.06 0.96 0.96 1.01 1.04 0.97 1.01 VG113 0.94 1.01 1.04 1.01 1.02 1.06 0.97

PG49 304.00 88.16 2.40 160.59 22.50 169.95 184.86 VG25 1.06 1.03 0.97 1.00 1.02 0.97 1.04 VG116 1.06 0.97 0.94 1.00 1.03 0.97 0.96

PG54 0.00 29.13 61.37 42.77 110.75 147.00 27.16 VG26 0.94 1.02 0.98 1.01 0.95 1.01 1.03 T(5-8) 1.10 1.05 0.94 0.98 1.00 0.93 0.96

PG55 100.00 51.87 31.88 8.77 43.36 20.73 39.44 VG27 0.94 1.00 0.94 1.00 1.02 1.00 1.02 T(25-26) 0.90 1.06 1.01 1.03 1.00 1.01 1.02

PG56 100.00 28.13 66.73 32.81 43.50 39.52 87.59 VG31 0.94 1.02 1.02 1.00 1.06 1.01 1.02 T(17-30) 0.90 0.97 1.07 0.98 0.96 1.03 0.94

PG59 255.00 42.79 83.42 126.51 76.77 60.03 147.06 VG32 0.94 0.97 0.98 1.01 1.01 0.94 1.00 T(37-38) 1.10 0.94 0.95 0.98 1.08 0.99 1.04

PG61 260.00 40.76 139.72 66.77 2.04 153.16 139.41 VG34 0.94 0.99 1.03 1.00 0.97 1.00 0.97 T(59-63) 1.10 0.99 0.96 0.98 1.07 0.91 1.05

PG62 0.00 17.78 52.81 6.87 11.96 8.87 45.99 VG36 0.94 0.96 1.04 1.00 0.95 1.01 0.97 T(61-64) 1.10 1.05 0.94 1.02 1.03 0.97 0.93

PG65 0.00 298.82 285.63 122.75 404.89 450.32 193.55 VG40 0.94 0.99 1.01 1.00 1.04 0.95 1.02 T(65-66) 1.10 1.05 0.97 0.98 0.93 1.08 0.99

PG66 492.00 103.20 304.33 402.91 97.52 258.07 87.04 VG42 0.94 0.99 0.95 1.00 1.05 0.98 1.02 T(68-69) 1.10 1.06 0.90 0.98 0.91 1.09 1.01

PG70 0.00 11.69 6.93 74.14 75.64 25.68 71.01 VG46 1.06 0.99 1.01 1.00 1.02 1.01 0.98 T(80-81) 0.90 1.03 0.96 0.98 1.05 0.98 1.01

PG72 100.00 4.39 30.62 53.41 72.78 71.73 68.67 VG49 1.01 1.01 0.96 1.00 0.96 0.99 0.99 QC34 0.00 27.21 22.22 22.64 7.40 5.59 23.05

PG73 0.00 70.09 21.53 3.99 90.98 65.66 77.96 VG54 1.06 0.99 0.95 1.01 1.01 0.95 0.96 QC44 30.00 11.33 22.69 19.53 19.17 16.08 10.10

PG74 100.00 20.40 15.49 84.20 36.52 9.80 88.44 VG55 1.06 0.98 0.94 1.01 0.97 0.97 0.95 QC45 30.00 4.04 14.10 10.02 12.28 22.65 20.33

PG76 0.00 77.91 55.91 46.97 92.70 83.56 75.73 VG56 1.06 0.99 0.94 1.00 1.00 0.97 0.96 QC46 30.00 18.74 21.38 24.87 4.15 11.22 9.40

PG77 0.00 77.57 49.11 31.72 89.91 8.28 46.13 VG59 0.94 1.00 0.96 1.01 0.99 1.02 0.97 QC48 0.00 19.53 6.06 5.42 7.69 22.43 20.74

PG80 577.00 250.31 180.57 461.22 407.97 235.11 353.08 VG61 0.94 1.02 0.97 1.01 1.03 0.98 1.01 QC74 0.00 6.51 4.42 16.65 22.77 3.09 4.44

PG85 100.00 30.62 84.22 6.11 99.56 19.42 33.06 VG62 0.94 0.97 0.96 1.00 1.02 0.95 1.01 QC79 0.00 18.57 12.10 20.33 23.22 24.94 12.36

PG87 0.00 46.05 37.86 8.57 23.99 6.99 16.89 VG65 1.06 1.01 0.96 1.01 0.99 1.05 1.00 QC82 0.00 23.00 25.36 2.08 17.39 22.58 13.87

PG89 125.44 526.05 604.19 128.16 38.86 155.77 198.50 VG66 0.94 1.02 0.99 1.01 1.00 0.97 1.02 QC83 0.00 6.42 5.23 20.19 21.00 29.62 14.73

PG90 100.00 18.63 16.63 37.80 12.95 31.81 79.79 VG69 1.06 0.98 0.98 1.00 1.03 1.05 0.99 QC105 30.00 21.19 15.34 1.89 19.63 18.28 17.74

PG91 0.00 52.18 7.72 31.91 3.54 63.00 43.75 VG70 1.06 1.00 0.97 1.01 0.98 1.02 0.99 QC107 30.00 6.31 7.71 25.65 24.61 20.12 11.38

PG92 0.00 56.27 13.38 67.32 35.66 55.81 33.10 VG72 1.06 1.01 1.05 1.01 0.98 1.06 1.04 QC110 0.00 6.80 11.72 13.65 9.43 2.34 24.33

PG99 0.00 37.37 34.86 74.69 90.27 43.12 31.78 VG73 1.06 1.00 0.98 1.01 0.96 0.95 0.96

Final results PSO KH GWO WOA EEGWO HGSO I-GWO
Cost ($/h) 151751.61 155696.34 145902.97 144856.49 152012.53 150221.08 142980.33
Ploss (MW) 114.431 188.555 135.040 76.802 126.458 104.136 61.019
VD (p.u.) 2.953 1.579 2.217 0.405 1.353 1.460 1.156



Table 13. Results for the optimal power flow problem using IEEE 118-bus test system for Case 2.
DVs PSO KH GWO WOA EEGWO HGSO I-GWO DVs PSO KH GWO WOA EEGWO HGSO I-GWO DVs PSO KH GWO WOA EEGWO HGSO I-GWO

PG01 0.00 63.99 35.51 9.88 88.95 33.71 56.02 PG100 0.00 277.31 222.78 192.35 238.99 67.20 325.39 VG74 1.06 0.99 0.99 1.02 1.06 0.98 0.97

PG04 0.00 43.12 62.67 39.89 75.08 24.00 29.66 PG103 140.00 92.19 93.59 55.81 71.89 34.11 30.91 VG76 1.06 1.03 0.96 1.01 1.01 0.96 0.97

PG06 100.00 83.32 39.58 75.85 2.45 79.48 65.70 PG104 100.00 85.66 66.16 56.69 13.40 65.25 70.10 VG77 1.04 0.97 1.00 1.01 1.02 1.06 0.99

PG08 77.21 21.41 58.37 18.35 37.26 45.88 24.13 PG105 0.00 28.18 48.48 43.03 15.58 80.45 42.15 VG80 1.06 0.95 0.99 1.02 1.03 0.98 1.01

PG10 550.00 50.82 141.56 414.95 78.15 259.10 323.66 PG107 100.00 80.56 29.71 51.50 42.48 55.86 29.21 VG85 1.06 0.97 1.04 1.02 1.01 1.04 1.01

PG12 185.00 54.87 40.45 131.16 129.74 181.86 73.31 PG110 0.00 61.60 34.74 59.02 26.38 61.12 49.18 VG87 1.06 0.98 1.04 1.02 1.03 0.99 1.04

PG15 0.00 16.18 28.94 26.00 28.82 17.88 39.14 PG111 136.00 108.41 65.47 35.79 117.75 9.16 37.30 VG89 1.06 1.04 1.02 1.02 1.00 0.99 1.03

PG18 0.00 73.77 91.46 4.57 92.27 38.68 46.65 PG112 0.00 17.40 37.38 65.49 58.76 83.57 52.80 VG90 0.94 1.05 0.94 1.01 1.01 1.00 0.97

PG19 0.00 24.16 44.95 39.39 83.91 61.35 54.06 PG113 0.00 53.22 76.86 75.50 70.66 39.93 47.65 VG91 0.94 1.03 0.96 1.01 0.97 1.03 0.99

PG24 100.00 83.05 56.92 54.42 25.52 35.92 38.17 PG116 0.00 80.78 46.90 9.97 27.09 15.67 14.51 VG92 0.94 0.99 1.00 1.01 1.00 0.97 0.99

PG25 320.00 256.00 247.63 192.25 318.96 17.59 62.45 VG01 0.94 1.04 0.99 1.01 0.95 1.01 1.03 VG99 0.94 0.99 1.01 1.01 0.95 1.02 1.03

PG26 0.00 296.56 24.02 161.28 363.90 85.07 301.51 VG04 0.94 1.02 1.00 1.02 0.95 1.00 1.03 VG100 0.94 1.01 1.03 1.02 0.99 0.95 1.01

PG27 100.00 54.21 25.06 59.16 8.20 84.22 32.46 VG06 0.94 1.02 1.00 1.01 0.97 1.00 1.02 VG103 0.94 1.01 1.02 1.02 0.95 0.97 1.01

PG31 0.00 39.43 48.92 28.42 80.57 32.89 36.04 VG08 1.06 1.03 0.96 1.01 1.01 0.97 1.00 VG104 0.94 1.00 1.02 1.02 1.04 1.02 0.99

PG32 0.00 70.26 33.75 14.57 60.42 94.30 34.61 VG10 1.06 1.04 1.02 1.02 1.02 1.05 0.98 VG105 0.94 1.00 1.00 1.02 1.02 1.03 0.98

PG34 25.65 87.62 80.68 56.63 58.53 65.55 31.33 VG12 0.94 1.06 1.00 1.02 1.03 1.04 1.02 VG107 0.96 0.98 0.97 1.02 1.06 1.06 0.95

PG36 100.00 36.18 50.67 21.07 65.30 62.25 50.69 VG15 0.94 1.04 0.97 1.01 1.00 1.05 0.97 VG110 0.98 0.97 1.02 1.01 0.98 0.95 1.00

PG40 0.00 40.81 29.47 11.29 30.40 17.50 51.63 VG18 0.94 1.03 0.96 1.02 1.05 0.96 0.98 VG111 0.94 1.02 1.03 1.02 1.01 1.01 1.01

PG42 0.00 26.53 18.09 23.77 73.97 86.67 46.53 VG19 0.94 1.03 0.97 1.02 1.01 1.03 0.97 VG112 1.06 0.99 1.02 1.01 1.03 0.98 1.01

PG46 0.00 37.26 48.03 5.08 8.17 95.45 33.69 VG24 1.06 0.96 0.98 1.02 0.97 1.05 1.00 VG113 0.94 1.01 0.99 1.01 1.05 0.96 0.99

PG49 0.00 88.16 91.60 104.43 57.17 220.74 101.90 VG25 0.94 1.03 1.02 1.02 1.04 1.02 1.00 VG116 1.06 0.97 0.99 1.01 1.01 1.02 0.98

PG54 0.00 29.13 54.37 106.65 20.40 135.79 54.92 VG26 0.94 1.02 0.96 1.01 0.97 0.95 0.98 T(5-8) 1.10 1.05 0.90 1.01 1.00 0.99 1.00

PG55 100.00 51.87 48.71 56.25 24.59 80.68 43.44 VG27 1.06 1.00 1.00 1.01 1.03 0.98 0.99 T(25-26) 1.10 1.06 0.97 0.99 0.92 0.92 1.00

PG56 0.00 28.13 35.79 71.08 83.46 80.04 36.87 VG31 1.06 1.02 0.98 1.02 0.99 1.03 1.01 T(17-30) 1.10 0.97 1.01 0.99 0.91 0.92 1.07

PG59 0.00 42.79 129.98 154.32 188.87 18.37 77.93 VG32 1.06 0.97 0.98 1.01 1.04 0.99 0.98 T(37-38) 1.10 0.94 1.08 1.00 1.00 0.98 1.01

PG61 260.00 40.76 136.61 71.06 92.62 113.83 102.17 VG34 0.94 0.99 0.97 1.02 0.98 0.96 0.99 T(59-63) 0.90 0.99 0.91 0.98 1.00 0.96 0.96

PG62 0.00 17.78 67.82 40.42 47.98 59.34 51.85 VG36 0.94 0.96 0.96 1.02 1.01 1.00 0.99 T(61-64) 0.97 1.05 0.97 0.98 0.94 0.99 0.99

PG65 491.00 298.82 37.63 29.90 228.08 74.88 171.03 VG40 0.94 0.99 1.06 1.02 1.05 1.01 0.99 T(65-66) 1.10 1.05 1.00 0.99 1.02 0.91 1.04

PG66 0.00 103.20 463.61 101.59 477.49 177.34 169.53 VG42 0.95 0.99 0.94 1.02 1.05 1.00 1.03 T(68-69) 0.90 1.06 1.01 1.00 0.93 1.02 0.99

PG70 0.00 11.69 53.88 4.07 24.23 40.24 82.47 VG46 1.06 0.99 1.02 1.02 0.95 0.97 1.01 T(80-81) 0.90 1.03 1.09 1.00 1.08 0.95 0.98

PG72 0.00 4.39 52.27 32.30 63.39 19.82 51.65 VG49 0.98 1.01 1.02 1.01 1.06 1.00 1.00 QC34 0.00 27.21 20.72 19.93 21.26 10.40 10.19

PG73 0.00 70.09 69.59 43.50 21.95 49.63 52.50 VG54 0.94 0.99 1.05 1.02 0.99 1.01 1.01 QC44 30.00 11.33 16.63 0.88 7.20 7.68 17.12

PG74 0.00 20.40 40.20 65.04 11.95 8.87 37.28 VG55 0.94 0.98 1.03 1.02 0.95 1.00 1.00 QC45 30.00 4.04 7.37 20.27 10.68 16.19 10.65

PG76 100.00 77.91 52.41 41.47 98.84 49.84 71.33 VG56 0.94 0.99 1.04 1.02 1.00 1.00 1.00 QC46 30.00 18.74 19.40 9.81 28.03 0.69 6.21

PG77 0.00 77.57 81.11 17.31 74.94 27.88 62.46 VG59 1.06 1.00 1.01 1.02 0.95 0.94 0.99 QC48 30.00 19.53 20.39 13.37 6.60 12.00 13.22

PG80 0.00 250.31 273.42 413.55 68.23 342.76 207.35 VG61 1.06 1.02 1.03 1.02 0.98 1.06 1.01 QC74 30.00 6.51 8.60 21.70 21.34 16.09 18.30

PG85 0.00 30.62 53.24 8.08 13.04 90.00 71.97 VG62 1.06 0.97 1.02 1.02 0.96 1.03 0.99 QC79 30.00 18.57 22.36 16.34 16.44 16.86 15.82

PG87 0.00 46.05 46.45 16.21 11.74 32.17 21.52 VG65 1.06 1.01 1.01 1.01 1.04 0.95 1.01 QC82 30.00 23.00 12.81 9.95 6.63 16.99 19.01

PG89 707.00 526.05 233.21 256.32 110.33 259.67 187.17 VG66 1.03 1.02 1.01 1.01 1.04 0.95 1.00 QC83 0.00 6.42 15.45 19.63 3.97 2.43 22.67

PG90 0.00 18.63 25.35 6.07 11.62 47.58 7.57 VG69 1.06 0.98 1.04 1.02 1.03 1.06 1.02 QC105 0.00 21.19 12.06 14.78 17.60 6.29 9.39

PG91 26.40 52.18 29.69 80.61 33.05 63.19 28.60 VG70 1.06 1.00 1.03 1.02 1.05 1.06 1.01 QC107 30.00 6.31 9.60 12.06 6.82 27.79 9.60

PG92 100.00 56.27 59.29 67.63 52.44 46.62 50.13 VG72 0.94 1.01 0.96 1.01 1.04 1.06 1.01 QC110 0.00 6.80 26.90 9.35 0.46 28.66 16.91

PG99 100.00 37.37 81.55 15.33 24.54 86.46 61.62 VG73 1.06 1.00 1.05 1.02 0.97 1.01 1.05

Final results PSO KH GWO WOA EEGWO HGSO I-GWO
Cost ($/h) 163613.92 155696.40 153293.89 145078.86 159448.68 154139.58 142115.60
Ploss (MW) 242.265 188.555 88.693 77.031 156.762 96.002 79.627
VD (p.u.) 3.059 1.579 1.082 0.668 1.057 1.360 0.880



7. Discussion

In this section, the main reasons for the superiority of the I-GWO algorithm over the comparative 

algorithms are discussed. The results reported in Table 2 and the convergence curves shown in Fig. 

5 certify that the I-GWO algorithm is competitive for unimodal problems, especially by increasing 

the dimensions, and it also has a faster convergence than other algorithms. This is mostly because 

the I-GWO uses the DLH search strategy based on the positions selected from the neighborhood 

with the radius defined in Eq. (10) which enhances the exploitation. 

The results reported in Table 3 and the curves shown in Fig. 5 indicate that the I-GWO algorithm 

is competitive with other algorithms for solving multimodal benchmark functions. The main reason 

for this sufficiency of the proposed algorithm in the exploration and convergence is the neighbors’ 

dimensional learning. Using this learning provides wolves to avoid local optima, which results in 

exploring the search space extensively. Moreover, the neighborhood structure used in I-GWO is 

defined by the principle that helps the diversification and intensification in every stage of the 

optimization. These are satisfied by considering the distance in which the larger distance, the 

diversity of visited wolves is more. By contrast, the smaller the distance, the number of its neighbors 

is less.

The convergence curves plotted in Fig. 6 and the results tabulated in Tables 4 and 5 demonstrate 

the superiority of I-GWO on the majority of hybrid and composition functions. Since these functions 

including, shifted and rotated unimodal and multimodal functions; therefore, the results prove that 

I-GWO can appropriately balance exploration and exploitation. Moreover, it maintains the diversity 

to handle difficulties in these kinds of complex functions. The main reason is having benefits of 

using both of the GWO and DLH search strategies, which are complementary to enhance the balance 

between the exploration and exploitation and the local optima avoidance.

8. Conclusion and Future Work

The leadership hierarchy and group hunting mechanism of grey wolves in nature was the 

inspiration of the GWO algorithm. Because of considering the only three best wolves of the 

population in the movement strategy, the GWO mostly suffers from lack of the population diversity, 

imbalance between the exploitation and exploration, and the premature convergence (Heidari et al., 

2017; Long et al., 2018; Lu et al., 2018; Tu et al., 2019a). To handle these shortcomings, we 

proposed an improved version of GWO named improved grey wolf optimizer (I-GWO).



In the proposed I-GWO algorithm, the movement strategy is developed by introducing the 

dimension learning-based hunting (DLH) search strategy inspired by the individual hunting of the 

grey wolves. Then, the movement strategy of the I-GWO selects the candidate either from the GWO 

or the DLH search strategies based on the quality of their new positions. The cooperation among 

these two search strategies improves the global and local search ability of the proposed algorithm. 

From the experimental results and the just-mentioned discussions, the following conclusions can be 

drawn:

- Using the proposed dimension learning-based hunting (DLH) search strategy enhances 

exploration and exploitation. 

- Using the GWO and introduced DLH search strategies together maintains the diversity, 

enhances the balance between the local and global search strategies, and escapes from the 

local optima.

- The obtained results from different experiments and statistical tests prove that I-GWO has 

better performance than the comparative algorithms for benchmark functions with different 

characteristics.

- The I-GWO algorithm has the potential to solve engineering design problems and optimal 

power flow problem.

I-GWO is a single-objective algorithm developed for continuous problems; thus, the binary and 

multi-objective versions of this algorithm can be implemented. Moreover, the proposed algorithm 

can be modified to solve large scale unconstrained global optimization problems. The proposed 

algorithm can be adapted for solving other real-world and large-scale optimization problems.

Appendix

- Pressure vessel design problem

The main objective of the pressure vessel design problem (Kannan et al., 1994) shown in Fig. 

A.1is to minimize the cost of material, forming, and welding of a vessel. Four variables of this 

problem are the thickness of shell (Ts) and head (Th), inner radius (R), and cylindrical section length 

without considering the head (L). The mathematical formulation and four constraint functions of 

this problem are given in Eq. (A.1).

Consider 𝑥 = [𝑥1𝑥2𝑥3𝑥4] = [𝑇𝑠 𝑇ℎ 𝑅 𝐿] (A.1)

Minimize 𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥2
3 + 3.1661𝑥2

1𝑥4 + 19.84𝑥2
1𝑥3



Subject to ,𝑔1(𝑥) = ― 𝑥1 +0.0193𝑥3 ≤ 0

,𝑔2(𝑥) = ― 𝑥2 +0.00954𝑥3 ≤ 0

,𝑔3(𝑥) = ― 𝜋𝑥2
3𝑥4 ―

4
3𝜋𝑥3

3 +1.296.000 ≤ 0

𝑔4(𝑥) = 𝑥4 ― 240 ≤ 0

where 0 ≤ 𝑥𝑖 ≤ 100. 𝑖 = 1. 2

10 ≤ 𝑥𝑖 ≤ 200. 𝑖 = 3.4

Fig. A.1. Design of pressure vessel problem

- Welded beam design problem

The objective of this design problem is to obtain a minimum fabrication cost for designing a 

welded beam (Coello, 2000). In Fig. A.2, there are four design variables to be optimized: the weld 

thickness (h), the attached part of the bar length (l), the bar height (t), and the bar thickness (b). 

Also, by applying the load on top of the bar, seven constraints should not be violated. These 

constraints are shear stress (τ), bending stress in the beam (σ), end deflection of the beam (δ), and 

buckling load on the bar (Pb). The formulation of this problem is computed by Eq. (A.2).

Consider 𝑥 = [𝑥1𝑥2𝑥3𝑥4] = [ℎ 𝑙 𝑡 𝑏] (A.2)

Minimize 𝑓(𝑥) = 1.10471𝑥2
1𝑥2 + 0.04811𝑥3𝑥4 ∗ (14.0 + 𝑥2)

Subject to ,𝑔1(𝑥) = τ(𝑥) ― 𝜏𝑚𝑎𝑥 ≤ 0

,𝑔2(𝑥) = σ(𝑥) ― 𝜎𝑚𝑎𝑥 ≤ 0

,𝑔3(𝑥) = δ(𝑥) ― 𝛿𝑚𝑎𝑥 ≤ 0

𝑔4(𝑥) = 𝑥1 ― 𝑥4 ≤ 0

𝑔5(𝑥) = P ― 𝑃c(𝑥) ≤ 0

𝑔6(𝑥) = 0.125 ― 𝑥1 ≤ 0

𝑔7(𝑥) = 1.10471𝑥2
1 + 0.04811𝑥3𝑥4 ∗ (14.0 + 𝑥2) ― 0.5 ≤ 0

where 0.1 ≤ 𝑥𝑖 ≤ 2. 𝑖 = 1. 2

0.1 ≤ 𝑥𝑖 ≤ 10. 𝑖 = 3.4



Fig. A.2. Design of welded beam problem

- Optimal power flow problem for IEEE 30-bus system

The IEEE 30-bus test system shown in Fig. A.3 (Radosavljević et al., 2015) consists of six 

generators, four transformers, and nine shunt VAR compensation buses. The lower and upper 

bounds of the transformer tap are set to 0.9 and 1.1 p.u. The minimum and maximum values of the 

shunt VAR compensations are 0.0 and 0.05 p.u. The lower and upper limit values of the voltages 

for all generator buses are set to be 0.95 and 1.1 p.u.

Case 1: Minimization of the fuel cost

In this case, the objective function f1 signifies the minimization of fuel cost for all generators and 

is calculated by Eq. (A.3). 

(A.3)

Where ai, bi and ci are the cost coefficient of the i-th generator. For PGi (in MW), ai, bi, and ci are 

considered in $/hr, $/MWh, and S/MW2h.

Case 2: Voltage profile improvement 

The objective function f2 is considered to minimize the fuel cost and voltage deviations and 

calculated by Eq. (A.4).
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Where the value of weighting factor Wv is set to 200.  
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Fig. A.3. IEEE 30-bus test system single-line diagram

- Optimal power flow problem for IEEE 118-bus system

The IEEE 118-bus test system is shown in Fig. A.4 (Radosavljević et al., 2015). It may be seen 

that this problem has 54 generators, 186 branches, nine transformers, two reactors, and 12 

capacitors. In this problem, there are 29 control (decision) variables: 54 generator, nine settings for 

transformers, and 12 shunt capacitor reactive power injections. The voltage limits of all buses are 

between 0.94 and 1.06 p.u. The transformer tap settings are considered within the interval of 0.90–

1.10 p.u. The available reactive powers of shunt capacitors are within the range 0–30 MVAR. To 

optimize this problem, two optimization cases are considered: to minimize the fuel cost of all 

generators and to minimize the voltage profile improvement. The objectives are as in Case 1 and 

Case 2 for the IEEE 30-bus test system. 



Fig. A.4. IEEE 118-bus test system single-line diagram 
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 Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems

 Introducing a new search strategy named dimension learning-based hunting (DLH)

 DLH is to enhance balance between local and global search and maintain diversity

 Performance of I-GWO is evaluated on the CEC2018 and three engineering problems

 I-GWO algorithm is very competitive and superior to the compared algorithms


