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Abstract—With integration of a larger amount of clean power
sources and power electronic equipment, operation and dynamic
characteristics of the power grid are becoming more and more
complicated and stochastic. Therefore, it is necessary and urgent
to obtain accurate real-time states, which is difficult from
traditional state estimation. This paper systematically develops a
phasor measurement unit (PMU) based real-time state estimator
for a realistic large-scale power grid for the first time. The
estimator mainly relies on three refined algorithms, i.e., an
improved linear state estimation algorithm, a practical bad
data identification method and a distributed topology check
technique. Furthermore, a novel system architecture is designed
and implemented for the China Southern Power Grid. Numerical
simulations and extensive field operation results of the state
estimator recorded under both normal and abnormal situations
are presented. All the tests and field results demonstrate the
advantages of the proposed algorithms in terms of online system
monitoring and feasibility of refreshing the states of the whole
system at intervals of tens of milliseconds.

Index Terms—PMU-based state estimation, design and
implementation, bad data identification, topology analysis.

NOMENCLATURE

n Number of buses.
m Number of branches.
Ib Vector of the branch current phasors.
U Vector of bus voltage phasors.
Yb Bus admittance matrix.
Ii Vector of nodal injection current phasors.
B Bus-branch association matrix.
Yi Bus admittance matrix for injected bus.
E Identity matrix.
Zm Measurement vector.
Z Vector of true values.
A Coefficient matrix.
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ε Vector of measurement errors.
W Weighted matrix.
G Gain matrix.
Û Vectors of estimated voltage phasors.
r Vector of estimated residuals.
σii Covariance of residuals.
ηi Specific thresholds for Topology Check.
τ SE Qualified Rate.

I. INTRODUCTION

POWER system state estimation (SE) is a basic function
of the energy management system (EMS) in a power

grid. It serves as a cornerstone for many applications, such
as power flow calculation, power dispatching, and online
security and stability analysis. The primary purpose of SE
is to maintain a complete and reliable real-time system state
database that can provide real-time operating data (states and
network models) for system operators and other power system
analysis applications.

Conventional SE methods use measurement data from su-
pervisory control and data acquisition (SCADA) system and
generally adopt weighted least squares (WLS) algorithms
to obtain system states. However, such methods relying on
SCADA measurements suffer from a series of problems,
such as long measurement intervals, large nonsynchronous
measurement errors, and numerical instability due to nonlinear
models [1].

Recently, with development of phasor measurement units
(PMUs) and wide-area measurement systems (WAMSs), new
opportunities have become available for obtaining real-time
states of power systems [2], [3]. To date, more than 4000
substations have been deployed with installed PMUs in
China’s power grids, covering almost all 500 kV-and-above
substations/plants and important 220 kV substations/plants [4].
WAMS uses the Global Positioning System (GPS) as a syn-
chronous clock for PMU data acquisition at individual sub-
stations. Measurement data are stamped with highly accurate
time values, and measurement data of a snapshot are highly
synchronous. In addition, reporting rate of a PMU can be up
to twice the frequency of the power grid, enabling efficient
tracking of system-wide dynamic behaviors. Nevertheless, raw
PMU measurements are likely to be somewhat contaminated
with bad data due to device failure, communication inter-
ference, sensor error, etc. [5]. Therefore, development and
implementation of SE systems based on PMU measurements
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can not only effectively improve quality of PMU measurement
data but also promote maintenance and utilization of on-
site PMUs. Real-time states and power flows of the system
as obtained through PMU-based SE will also provide more
accurate and refined information for system operation and
dispatch.

Since invention of PMU technology, many studies have at-
tempted to incorporate PMU measurements into SE [6]. Early
studies simply introduced PMU measurements into traditional
state estimators. Related efforts used PMU measurements to
improve measurement redundancy and observability, but did
not fully utilize the characteristics and advantages of PMU
data [7], [8]. Later, hybrid SE using SCADA and PMU data
was considered [9], [10], but a compatibility problem between
the two different types of measurement data has not been effec-
tively solved, and sometimes performance is even worse than
of traditional state estimators due to time skew errors [3]. Prof.
Phadke established a PMU-based measurement equation under
the condition that PMU configuration satisfies observability
and proposed the concept of linear state estimation. It also
shows the WLS method can be used to solve the SE problem,
but there is no further discussion on how to solve the complex
domain WLS [3], [6]. Synchrophasors are used to solve the
multiarea state estimation problem through a common LS
method [11]. Current synchrophasors are converted to virtual
voltage measurement in polar coordinates for traditional state
estimation [12]. The CWLS algorithm [13] is proposed and
applied to PMU linear state estimation [14]. CWLS-SE has
achieved good results with faster calculation speed and robust-
ness to phase angle errors [15]. New theories and methods
concerning PMU-based SE have been developed, and many
studies have achieved remarkable results [16], [17]. However,
various problems, such as bad data detection and identification,
real-time topology analysis have still not been completely
addressed [18], [19]. Moreover, efficiency of some methods
cannot be successfully adapted to high-density PMU data.

On the other hand, few practical PMU-based SE systems
are implemented in the industry, although related research
works have been widely reported. The China Southern Power
Grid (CSG) conducted a PMU-based SE demonstration project
in a small-scale partial power grid in 2010. Because of
the nonlinear model, SE interval was 2–4 s, much longer
than PMU measurement interval. Consequently, results did
not reflect the essential characteristics of PMU-based SE
methods. Several US utilities have carried out similar pilot
projects on PMU-based SE in small-scale grids in the last
few years [20], [21], and linear state estimators have been
adopted and implemented in extra-high-voltage (EHV) power
grids with tens of substations [22]. The paper [23] presented
the architecture and testing of a real-time state estimator
based on synchrophasors in a medium-voltage distribution
network of the Swiss Federal Institute of Technology Lausanne
(EPFL) campus. Most reported projects have been developed
for and tested in small power systems, while applying of
PMU-based SE on large-scale power grids puts forward higher
requirements for computational efficiency and robustness of
the algorithm, and real-time processing of massive PMU data.
More efforts will be needed to pursue practical industrial

application of PMU-based SE.
To address these problems in theoretical methods and indus-

trial practice, this paper proposes a systematic SE framework
based on PMU measurements and presents its design and
implementation for use in the EHV transmission network of
the CSG. The two main contributions are summarized as
follows:

1) This paper proposes an improved PMU linear state
estimation method that takes into account node injection
constraints, incorporating practical bad data identification and
distributed local topology check methods. The proposed meth-
ods can accurately and quickly track the real-time state of a
power system.

2) Our work has first implemented and applied a PMU-
based SE on a large-scale power grid consisting of hundreds
of substation and plants. Field results show our work has sig-
nificantly improved availability of PMU data and observability
of the power grid, which can provide reliable real-time data
for other system analysis applications.

The rest of the paper is structured as follows: Section II
introduces the CSG system and illustrates design and im-
plementation of the PMU-based state estimator for use in a
control center of the CSG; practical issues facing deployment
of the PMU-based state estimator are also presented in this
section. Section III proposes key algorithms for the PMU-
based SE system, including an improved linear SE model
and solution and a bad data processing method. Section IV
validates effectiveness of the proposed PMU-based state esti-
mator through simulations. Section V presents field operation
results under both normal and abnormal conditions. Section VI
concludes the paper.

II. ARCHITECTURE AND DESIGN

To ensure real-time performance of PMU-based SE on
large-scale power grid, it is necessary to design flexible system
architecture and efficient WAMS data processing techniques.

A. Overall Design of PMU-Based SE in the CSG

The CSG is composed of five provincial power networks
in South China, with a total service area spanning 1 million
square kilometers and serving a population of 252 million
people. The 500 kV backbone network of the CSG includes a
total of 234 substations and plants and 465 AC transmission
lines. The power grid topological graph is shown in Fig. 3
below. Conventionally, the control center of the CSG uses
a WLS-based SE based on SCADA measurements, as most
utilities throughout the world do. However, SCADA Measure-
ments of individual snapshots are weakly synchronized, and
estimation intervals can be minute-long [24]. SCADA-based
SE may suffer from divergence problems, and it might turn
out not to be a global optimal solution because of nonlinearity
of the estimation model.

Due to inherent shortcomings of the existing SE system,
the PMU-based SE is studied and applied to improve real-time
monitoring capabilities for a power grid. PMUs are deployed at
all of the 500 kV substations in the CSG. Reporting rate of the
PMUs in the CSG is 50 Hz, as described in the IEEE C37.118
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standard [25]. A real-time PMU-based state estimator has been
implemented that covers the whole EHV grid of the CSG.
Some practical issues and concerns have been encountered
while implementing this PMU-based state estimator. Detailed
issues and the corresponding solutions adopted to tackle them
are summarized as follows:

1) Although parts of the 220 kV voltage grid in the CSG
are also covered by PMUs, since measurement data of the
220 kV substations are not uploaded to the control center, SE
is currently performed only for a 500 kV grid. However, if
necessary measurement data become available, the program
can be easily extended to the 220 kV grid.

2) There are 8 ultrahigh-voltage DC transmission lines in
the CSG, and PMUs are also installed on the AC lines at
the AC/DC converter stations. The proposed PMU-based state
estimator does not consider a DC line model, so power and
current of DC lines are treated as injected power and current.

3) Adequate PMUs guarantee considerable measurement re-
dundancy, so observability of the CSG will meet requirements
for SE unless there is a large-scale communication failure
or equipment failure. If some substations are unobservable
because of bad data, they will be excluded from the main
island, as in traditional SE.

4) PMUs can measure all three phase values and obtain
positive sequence values. However, symmetry of the three
phases in the EHV grid is sufficiently high, and the main
grid model used by the operator is the positive sequence
model. The number of matrix dimensions of the positive
sequence model is only one third that of the three-phase model,
meaning that calculation efficiency can be greatly improved by
using a positive sequence model. Therefore, positive sequence
modeling and measurements are used in the project.

5) Each substation/plant with a PMU in the CSG is also
equipped with a phasor data concentrator (PDC) that is di-
rectly connected to the dispatch center. Communication delay
between PDC and control center is less than 50 ms, in
accordance with requirements of Chinese industrial standards.
PMU data delay measured in the CSG is usually approximately
10 ms; accordingly, PMU-based SE result may lag by tens of
milliseconds compared to actual time.

B. System Architecture

PMU-based SE system was developed and implemented
based on Operation Smart System (OS2) of the CSG, inde-
pendent of and parallel to an existing SE system. OS2 is the
EMS of the CSG and provides various data interfaces to power
system models, SCADA and PMU measurements, and other
information. The system can be roughly divided into four parts
as Fig. 1: platform layer, database layer, application layer, and
graphical user interface (GUI) layer.

The database layer includes a static database, a real-time
database (RTDB), and a WAMS measurement time series
database. The static database is a relational database based on
MYSQL that stores basic information of the power grid and
configuration information required for system operation and
communication. RTDB is a fast in-memory database developed
based on Redis for use as a cache, message broker and queue
while programs are running. WAMS database is designed to
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Fig. 1. PMU based SE System Architecture.

store/load WAMS real-time and historical data. Compared
with traditional SE procedure, since PMU data, including
SE results, are large in volume and high in resolution, it is
necessary to develop a specialized time series database with
higher performance for real-time access.

The application layer deploys the algorithms proposed in
Section III, including bad data processing, linear state es-
timator, local topology check and other necessary system
tools. These programs were developed in C/C++ for the best
efficiency. In addition, to facilitate offline testing of the system,
a tool that can send (historical or simulated) C37.118 PMU
data files has been developed and integrated into the system.

C. WAMS Data Processing
The WAMS time series database is divided into two parts:

a time series real-time database and a time series historical
database. The real-time part of the database can be regarded as
a database based on memory operations. It receives the latest
data from the PMUs and performs data synchronization. A
linked list and stack structure are used to store the latest PMU
data in memory and in real time. Length of the saved data
is fixed to 5 minutes. When data for a new time point come
in, data from more than 5 minutes prior will be compressed
and saved in the time series historical database. By storing
the latest data in memory, it is ensured that applications can
read these measurement data and SE result data at the fastest
possible speed.

The historical database stores overflow data from the real-
time database. The historical database specifically stores com-
pressed floating-point data subjected to integer fixed-point
and incremental processing. Processing procedures include the
following steps, as shown in Fig. 2.

Conversion coefficients for various types of measurements
are defined in accordance with accuracy requirements for
WAMS data. All floating-point numbers are multiplied by cor-
responding conversion coefficients and converted by rounding
into an integer fixed-point sequence; then, adjacent points in
the fixed-point sequence are successively subtracted to obtain
an incremental data sequence; and finally, incremental data are
compressed via the Lempel-Ziv-Welch (LZW) algorithm [26].
When PMU data are to be used, decompression and incre-
mental processing are performed in reverse order to restore
original data.
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III. METHODS AND TECHNOLOGIES

Data interval of the PMUs is only 20 ms, so the most
important concern for PMU-based SE is to ensure accuracy
while still achieving high calculation efficiency and robustness.
This section introduces methods used to ensure accuracy and
efficiency in realizing PMU-based real-time SE for a large-
scale power grid.

A. Improved Linear State Estimator

The basic linear SE (LSE) algorithm has been well explored
in recent decades [3]. As mentioned above, a PMU can
directly measure current and voltage phasors. Therefore, an
LSE model can be obtained in accordance with line impedance
characteristics, as for a power system with n buses and m
branches,

Ib = YbU (1)

where Ib ∈ C2m and U ∈ Cn are vectors of the branch
current phasors and bus voltage phasors, respectively, and
Yb ∈ C2m×n is the admittance matrix, which represents the
relationship between branch currents and node voltages.

Most PMU-based LSE methods are based on (1). However,
such an LSE model is based only on branch characteristics,
while constraints of the power network are not considered.
In fact, a PMU can measure current phasors of all power
lines at a substation, including windings of the transformers.
Therefore, nodal equations can be derived as follows in light
of Kirchhoff’s current law (KCL):

Ii = BIb (2)

where Ii ∈ Cn is the vector of nodal net injection current pha-
sors, B ∈ Rn×n is bus-branch association matrix. According
to the definition of an injection current, nodal injection current
is the sum of currents of the loads and generators connected
to the node. Therefore, an injection current of a 500 kV node
is the sum of current measurements for high-voltage windings
of the transformers, which are not counted as branches. There
may be some nodes in the power grid that have no load or
generation, that is, zero-injection nodes. Injection current value
for such a node is zero.

Substituting equation (1) into (2) yields

Ii = Y U (3)

where

Yi = BYb (4)

represents the relationship between nodal injection currents
and node voltages.

By combining equations (1) and (3), the SE model is
derived:

Z =

UIb
Ii

 =

 U
YbU
YiU

 =

E
Yb

Yi

U = AU (5)

where Z ∈ C2m+2n is the vector of true values corresponding
to the PMU measurements. Thus, the measurement model is
represented as the following:

Zm = AU + ε (6)

where Zm ∈ C2m+2n is the measurement vector and ε ∈
C2m+2n is the vector of measurement errors, which are
generally assumed to obey independent Gaussian distributions
with mean values of zero. The objective function of the model
expressed in (6) using a WLS estimator is as follows:

min
U

JWLS(U) = (Zm −AU)HW (Zm −AU) (7)

where W ∈ Rn×n is a diagonal weight matrix composed
of reciprocals of the measured error variances. Covariance of
measured data can be estimated by analyzing historical data,
as in traditional SE method. Zero injections use very large
weights. The solution to (7) is given by

Û = (AHWA)−1AHWZm = GZ (8)

This is the globally optimal unbiased estimate for problem
(7) when measurement errors obey a Gaussian distribution. It
is evident that only one matrix inversion operation is needed
to obtain the solution, without any iteration. Thus, common
problems of iterative algorithms, such as problems with con-
vergence and numerical stability, are avoided. Furthermore, in
the case that network topology and measurement configuration
remain unchanged, gain matrix G is constant, which can
significantly reduce computing time.

B. Implementation of LSE

To improve computational efficiency of LSE, the following
techniques are further adopted.

First, the least squares method in the complex domain is
used to perform the calculation. In our previous work [15],
we proposed an LSE method based on the least squares
approach in the complex domain. Compared with traditional
methods, it shows better robustness to phase angle errors, and
computational efficiency is also improved several-fold.

Second, because many of the matrices involved in the
calculation process, such as branch admittance matrix and
the weight matrix, are highly sparse, the PMU-based SE
system uses a sparse matrix representation method to perform
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matrix inversion and other operations. This approach can also
significantly increase speed of matrix operations.

Finally, a QR decomposition algorithm is adopted for solv-
ing linear equations. With use of the least squares approach
in polar coordinates, the Q matrix in QR decomposition
becomes a unitary matrix, while R is a complex non-singular
upper triangular matrix. When topology and parameters of the
power grid remain unchanged, admittance matrix also does
not change; thus, QR decomposition does not need to be
recalculated, which can greatly improve calculation efficiency.

C. Bad Measurement Identification

Bad data are inevitable in measurements; consequently, bad
data identification is an essential part of SE. The largest
normalized residuals (LNR) test [1] is a classical method for
handling bad data. The basic idea is to estimate measurement
errors from residuals and eliminate the measurement point
with largest error. Definitions of residuals and normalized
residuals are given as follows:

r = Zm −AÛ (9)

rNi =
|ri|√
σii

(10)

where σii is the covariance of ri. Normalized residuals have
standard normal distribution. Therefore, the largest normalized
residual can be compared against a statistical threshold to
determine whether it corresponds to bad data. However, the
SE procedure needs to be repeated once such an identified
bad measurement has been removed from the measurement
set. For a large-scale power system or a system with a large
amount of bad data, it may be necessary to repeat this process
dozens of times to identify and remove all bad data, resulting
in heavy computational burden.

A practical method of bad data identification is proposed
to address this problem. A dual-pipeline processing method is
adopted in the system. Specifically, the main pipeline performs
the SE procedure, while the other pipeline identifies and pro-
cesses bad measurements. The basic idea is to process a short
period of measurements from before current time to identify
bad data and obtain a set of measurement points with bad data
during this period. Then, indexes of bad measurement points
are stored and updated in the real-time database, where they
can be accessed by the state estimator at any time. Detailed
procedure of bad data identification method is described as
follows.

In Fig. 3, tnow is always measurement time of the latest
measured PMU data, t denotes the time at which a snapshot
of the bad data is being processed, and S is the index set of
bad measurement points. Steps are as follows:

Step 1: model and topology of the power grid are read. S
is initialized as an empty set, and t = tnow.

Step 2: PMU measurements at time t are read from the
database, and bad measurements are removed according to S.

Step 3: WLS LSE is carried out using equation (8).
Step 4: normalized residuals are computed, and the maxi-

mum normalized residual rNmax is determined.
Step 5: If rNmax > c, the corresponding measurement is elim-

inated from measurement set, index of this measurement point
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Fig. 3. Bad Data (BD) Identification.

is added to S, and procedure returns to Step 3. Otherwise, it
proceeds to Step 6. Here, c denotes the chosen threshold, for
instance, 3.0.

Step 6: Check if t has reached latest time. If no, that is
t < tnow, t is increased by 1 time period, and procedure returns
to Step 2 to continuously identify new bad measurements in
the next data frame. If t has reached latest time, which means
this round of identification has come to an end, then S is
stored in the database and procedure returns to Step 1.

When a round of bad data detection procedure ends, mea-
surement points marked as bad data in the previous round
will be cleared, that is, S will be refreshed. At this time, if
corrupted measurement point is no longer recognized as bad
data, the point will be returned into the SE routine.

It should be noted this method is based on a simple idea
that measurement points that experienced bad data are likely
to produce bad data again, which has been verified by field
data. Results obtained with this method are conservative and
may exclude correct measurements.

D. Distributed Local Topology Check

Existing methods of topology analysis require measure-
ments of switches and breakers from SCADA; however, the
time interval of this system is too long to track topology
change in real time. Although PMU data do not contain
circuit-breaker/switch status information, voltage and current
measurements can be used to assist in real-time monitoring of
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changes in system topology [20].
Transmission lines between substations in the power system

are fixed; therefore, network topology depends on whether
each of these lines is in “service” or “outage” state. Generally,
an EHV substation has only a maximum of two busbars
connected to the network. If the two busbars are electrically
connected to each other, then substation is equivalent to a
single node. If the two busbars are not connected to each
other, then substation is equivalent to two nodes. In a check of
local network topology, it is necessary to determine whether
each substation is equivalent to one or two nodes, confirm
whether each transmission line is in “service” or “outage”
state, and then distinguish to which node each line belongs. It
should be noted that because of installation positions of most
potential transformers (PTs), the PMU will actually measure
voltage phasors of each line connected to busbars instead of
voltages of busbars themselves. Under the assumption there
are no bad data in current measurements of all lines at a local
plant/substation, the following rules can be established:

Rule 1: Sum of the currents on all lines, including the
lines connected to transformers, should be zero. In practice,
considering measurement error and the self-consumption of
substation/plant, absolute value should be less than a certain
threshold η1 that is close to zero.

Rule 2: If the plant station is equivalent to 2 nodes (rep-
resented by nodes A and B), the sum of the currents on the
lines belonging to node A (B) should be zero or, in practice,
less than a certain threshold η2(η3) that is close to 0.

Rule 3: voltages on all lines belonging to node A or node
B should be equal. In practice, maximum amplitude (angle)
difference of these voltage phasors should be less than a certain
threshold η4(η5) that is close to 0.

The above rules can be used to determine whether the
number of equivalent nodes for a substation is one or two
and connectivity between the lines and nodes. Operating state
of a line is judged based on the following rule:

Rule 4: If current amplitude on the line is greater than a
certain threshold η6, then line is in “service” state; otherwise,
it is in “outage” state.

Thresholds η1–η6 should be determined in accordance with
rated values of the devices and PMU measurement errors.
The proposed distributed topological check method can avoid
topological errors and delays caused by use of SCADA digital
measurements in traditional topological analysis and provides
a practical way to quickly and accurately obtain network
topology of a power system.

E. Overall Procedure

PMU-based SE procedure involves acquisition and storage
of various types of data, and all the proposed modules must
work together to complete the SE task. Operation procedure
and the data flow are summarized below.

Step 1: grid model data are read and parsed from CIM files
in static database, which is a very time-consuming process.
Fortunately, this process needs to be executed only once when
program is initialized.

Step 2: digital SCADA measurements of breakers and
switches are obtained from the OS2 platform.

Step 3: Based on statuses of the switches and breakers,
traditional breadth-first search method is used to carry out
topological analysis to transform node-breaker model of sys-
tem into a bus-branch model.

Step 4: latest PMU measurement data are read from the
WAMS time series database, and latest set of bad measurement
points is read from real-time database. Then, measurement
points marked as bad data are removed from measurement
set.

Step 5: A topological check is carried out using PMU
measurements. If some measurements for a substation are
excluded as bad data, then local topological analysis cannot
be performed for this substation because there are not enough
PMU measurements available.

Step 6: LSE is performed based on PMU measurements,
and results are stored in the WRDB. If grid parameters,
network topology and measurement points have not changed,
then matrix A is constant, which makes calculations very
efficient. The proposed bad data processing method can also
avoid frequent changes in measurement points and improve
efficiency.

Step 7: procedure returns to Step 4 when new PMU data
arrive and returns to Step 2 when new SCADA data arrive.
Note these two steps occur in parallel, which means that if
PMU data and SCADA data arrive at the same time, the above
operations will be performed simultaneously.

IV. SIMULATION TEST

In this section, the accuracy and efficiency of the proposed
improved SE method is verified through simulation tests.

A. Accuracy Validation

To verify accuracy of the proposed method, tests were
carried out based on IEEE test cases and simplified CSG EHV
power network, because we cannot obtain true values in the
real power grid. The proposed improved linear state estimator
was compared with classical linear weighted least squares
method (WLS) and complex domain WLS (CWLS) [15]. To
ensure statistically sound results, 1000 Monte Carlo simu-
lations were performed. Simulated measurements were gen-
erated by adding zero-mean Gaussian noise to true values.
Statistics of the noise are shown in Table I.

Mean total vector error (MTVE) index is defined for esti-
mates as shown below to evaluate overall estimation accuracy
in tests:

MTVE =
1

n

n∑
i=1

 1

L

L∑
j=1

|xe,ij − xiT|
|xij − xiT|

 (11)

where xe,ij and xij denote estimated and measured values,
respectively, of i-th state variable in the j-th sample; xiT is
true value of the i-th state variable; L is number of samples;
and n is number of state variables.

Simulation results for the CSG system are shown in Table II,
which presents the MTVEs for voltage and current (MTVE U
and MTVE I), sum of the absolute biases of active and
reactive power for all buses (PB P and PB Q), maximum
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TABLE I
STANDARD DEVIATIONS OF MEASUREMENT ERRORS

Error Voltage Current
Magnitude Phase Magnitude Phase

Assumed 0.3% 0.4◦ 0.4% 0.7◦

TABLE II
TESTS ON THE CSG SYSTEM

WLS CWLS Proposed
MTVE U 0.3472 0.2462 0.2279
MTVE I 2.2446 0.7764 0.5620
PB P (MW) 10427.77 9714.67 6246.24
PB Q (MW) 4757.86 4016.69 2832.50
Max Error (p.u.) 0.0117 0.0087 0.0068
Time (s) 0.0451 0.0117 0.0169

errors among all estimated states, and average computation
time for each algorithm. Algorithms are implemented in the
same way and with the same measurement data.

It can be concluded from Table II the proposed method
improves estimation accuracy for voltage phasors. Current
phasors are also significantly improved, and maximum error
among all states is reduced by more than 20% compared with
other LSE methods. It can also be seen from power biases the
proposed method has a significant advantage in power flow
calculation.

B. Computational Efficiency Validation

As shown in Table II, computation time for LSE is on
the level of milliseconds, longer than of the CWLS method
but less than of the WLS method; therefore, it can still
meet the requirements for real-time SE. Further simulations
were performed on various test cases of different scales to
compare computation times required for traditional SE based
on SCADA data and proposed algorithm.

It can be seen from Table III the PMU-based SE algorithm
is approximately one hundred times higher in computational
efficiency than traditional SCADA-based SE algorithm, and
the larger the grid size is, the more obvious the advantage
of the proposed algorithm. This is mainly because traditional
SE method requires iterative calculations, and the Jacobian
matrix needs to be reconstructed in each calculation, causing
this method to take more time. As size of the power grid in-
creases, number of iterations also increases, further increasing
computation time.

TABLE III
TESTS ON IEEE SYSTEMS

Case Computation time/ms RatioSCADA-SE PMU-LSE
IEEE 14 7.2 0.21 34.2
IEEE 39 25 0.38 65.8
IEEE 57 53 0.57 93.0
IEEE 118 286 1.91 149.7
IEEE 300 1675 7.46 224.5

V. FIELD OPERATION RESULTS

In this section, field operation results of PMU-based SE
system in CSG under both normal and abnormal circumstances

are presented and analyzed, which have proven effectiveness
and advantages of the PMU-based SE.

A. Field Results Under Normal Circumstances

The system was successfully put into operation at CSG in
2018. First, a snapshot of typical PMU-based SE results under
normal circumstances is presented, as shown in Fig. 4. Key
statistics of SE results are shown in Table IV.

Grid topology graph SE results statistics

Qualified Rate

SE Observability
Selected Voltage Curves

(a)

Substations 

and Lines 

 Curves Comparation

 Statistics Comparation

(b)

Fig. 4. Screenshots of PMU-based SE system in CSG. (a) PMU-based SE
system dashboard. (b) Comparison of SCADA based SE results, PMU based
SE results and PMU measurements.

TABLE IV
STATISTICS OF SE RESULTS AT 15:48:25:000 ON AUG. 17, 2018

Statistic Value
Number of Valid Topological Islands 2
Number of Topological Nodes 231
Number of Branches 464
State Estimation Observability 98.7%
Valid Measurement Coverage 67.8%
Number of Bad Measurements 291
Qualified Rate 97.9%

Here, Qualified Rate of SE [27] is adopted to evaluate
performance of estimated results. Qualified Rate is the major
indicator used to assess SE performance in the Chinese power
industry and is defined as follows:

τ =
Nq

N
× 100% (12)

where N is the total number of valid measurements and Nq is
the number of qualified measurement points, whose residuals
are less than threshold values. Qualified rate was empirically
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derived based on field experience without a theoretical basis,
but it has proven to be a practical and effective criterion
that provides good guidance in improving quality of SE [28].
Qualified rate of this snapshot is 97.9%, which means the
estimation can be deemed successful. The number of mea-
surement points identified as bad data is 291, accounting
for 25% of all measurement points (231 + 464 × 2). In
addition, missing measurements caused by other problems,
such as equipment failure and communication failure, cause
total available measurements to account for only 67.8% of
all measurement points, although all substations are equipped
with PMUs. Fortunately, such effective measurement coverage
still guarantees observability of almost the whole network, i.e.,
98.7% of all substations.

Measured and estimated values of voltage phasors that are
identified as bad measurements are compared in Fig. 5. As
seen, most of the identified bad voltage measurements exhibit
obvious errors in magnitude or phase. Besides, there are
even some substations for which measured magnitudes and
phases of the voltage are missing. PMU SE corrects most bad
measurements in real time, and fills in missing data, increasing
network observability from 67.8% to 98.7%.
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Fig. 5. Comparison between measured and estimated values of bad voltages.

Five-second traces around this snapshot for Xingshi substa-
tion, which is represented as 26th node in Fig. 5, are plotted
in Fig. 6. Significant bad data appear in phase measurements.
In addition, a slight disturbance occurred and quickly dis-
appeared, and PMU-based estimator could effectively track
system dynamics. However, current SCADA-based state es-
timator of EMS, which runs every minute, could not detect
this disturbance because the SCADA system did not report
measurements during the disturbance.

We continue by lengthening timeline to one week to exam-
ine corresponding SE results. Fig. 7 shows daily distributions
of Qualified Rate from December 15th to December 21st,
2018, which are represented by box diagrams. In this figure,
the red line in each box indicates the mean qualified rate, with
the upper (lower) edge of the box representing the 95% (5%)
quantile and the upper (lower) whisker representing the 99.5%
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Fig. 6. Comparison between raw and estimated data at Xingshi substation.
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Fig. 7. Daily distributions of the SE qualified rate.

(0.5%) quantile. Mean value of qualified rate is above 98%,
and qualified rate is greater than 97% for more than 90% of
the snapshots.

It is demonstrated that a PMU-based SE system can main-
tain normal and stable operation with satisfactory SE Qualified
Rate for a long time.

In summary, PMU-based state estimator can successfully
identify bad data and provide reliable system states in real
time, which can be used for real-time monitoring and enhanc-
ing observability.

B. Field Results Under Fault Conditions

On August 19, 2018, at approximately 16:03:22, there was
an abrupt outage in the 500 kV Line A between Shuixiang
and Guancheng because of a short-circuit fault. There are two
transmission lines, i.e., Line A and Line B, between Shuixiang
and Guancheng. Fig. 8 shows the 5-minute traces of Line
B’s voltage and power during the fault as obtained via PMU-
based SE and traditional SCADA-based SE. The short-circuit
fault caused voltage to drop to below 400 kV while exhibiting
continuous oscillations. PMU-based SE results were accurate
and timely, whereas SCADA-based estimation results always
remained near normal value, failing to reflect voltage drop
and fluctuation. Because of the fault in Line A, power flow
was transferred to Line B. Thus, Line B exhibited a large
increase in power with multiple cycles of oscillations, as seen
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Fig. 8. Comparison of SE results during a fault.

from PMU-based SE results shown in Fig. 8, while traditional
SE results were distorted and delayed. There was more than
1 minute of time when actual line transmission power had
risen to more than 2100 MW but SCADA-based SE results
were less than 1400 MW.

In general, short-circuit faults cause severe changes and
oscillations in voltage and power. Results obtained via PMU-
based SE are accurate and timely, but SCADA-based SE
results cannot reflect rapid changes in voltage and power due
to lower measurement frequency and longer SE interval. Thus,
at the moment of a disturbance, the proposed PMU-based
state estimator can quickly and accurately capture dynamic
processes that traditional state estimator cannot track.

VI. CONCLUSION

As PMUs have been widely deployed in modern power
grids, high-precision and real-time power system SE is be-
coming feasible. This paper develops a systematic solution
for PMU-based SE in large-scale power grids. Specifically,
this solution consists of three modules: an improved LSE
algorithm, a practical technique for processing bad measure-
ments and distributed local topology check method. Design
and implementation of the proposed PMU-based SE method
for real-world CSG are also illustrated. Extensive test and field
results demonstrate PMU-based SE contributes to monitoring,
protection, and operation of a power system in many respects,
which include but are not limited to the following:

1) Providing real-time high-resolution state estimates for a
power system, which cannot be obtained with a traditional
state estimator.

2) Compensating for and mitigating loss of system ob-
servability caused by lack of measurement data. Furthermore,
results for measurement points with bad data obtained via the

PMU-based SE method can provide guidance for maintenance
and conditioning of PMU devices.

3) Providing cleaned data for other applications. Many
studies of wide-area analysis, protection and control rely
on accurate PMU measurements. In fact, other advanced
synchrophasor-based applications, e.g., transient stability as-
sessment and online load parameter identification, have also
been developed and deployed on the presented platform.

From the temporal perspective, the proposed PMU-based SE
method can reduce delay for online monitoring and situational
awareness of power systems from minutes to seconds or even
tens of milliseconds. We believe that PMU-based SE will serve
as an important cornerstone for future power system energy
management.
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