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H I G H L I G H T S

• A novel hybrid electric load forecasting model based on MMI-FCRBM-GWDO is developed for the decision making of a smart grid.

• To overcome the problem of curse of dimensionality a novel MMI technique is proposed for feature selection.

• The forecast accuracy and convergence rate of FCRBM is enhanced by GWDO.

• The proposed model is tested on hourly load data of USA power grids: FE, Dayton, and EKPC.
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A B S T R A C T

Accurate electric load forecasting is important due to its application in the decision making and operation of the
power grid. However, the electric load profile is a complex signal due to the non-linear and stochastic behavior
of consumers. Despite much research conducted in this area; still, accurate forecasting models are needed. In this
article, a novel hybrid short-term electric load forecasting model is proposed. The proposed model is an in-
tegrated framework of data pre-processing and feature selection module, training and forecasting module, and
an optimization module. The data pre-processing and feature selection module is based on modified mutual
information (MMI) technique, which is an improved version of the mutual information technique, used to select
abstractive features from historical data. The training and forecasting module is based on factored conditional
restricted Boltzmann machine (FCRBM), which is a deep learning model, empowered via learning to forecast the
future electric load. The optimization module is based on our proposed genetic wind-driven (GWDO) optimi-
zation algorithm, which is used to fine-tune the adjustable parameters of the model. The accuracy of the pro-
posed framework is evaluated through historical hourly load data of three USA power grids, taken from publicly
available PJM electricity market. The proposed model is validated by comparing it with four recent forecasting
models like Bi-level, mutual information-based artificial neural network (MI-ANN), ANN-based accurate and fast
converging (AFC-ANN), and long short-term memory (LSTM) in terms of accuracy and convergence rate.

1. Introduction

Smart grid (SG) emerged as a smart power system that has recently
achieved a lot of popularity due to its importance in electric load
forecasting [1]. A variety of novel research work has been conducted in
the field of electric load forecasting, however, more accurate and robust
electric load forecast models are still required. An accurate estimation
of variation in future electric load is of great importance for both
electric utility companies and consumers due to its application in the
decision making and operation of the power grid [2]. However, the
major obstacles in future electric load forecasting are the various

influencing factors such as variable climate, temperature, humidity,
occupancy patterns, calendar indicators, and social conventions. The
valid mapping of these influencing factors and load variations is ex-
tremely cumbersome due to the stochastic and non-linear behavior of
consumers. The emanation of advanced metering infrastructure (AMI),
communication technologies, and sensing methods in the SG enable us
to record, monitor and analyze the impact of these influencing factors
on electric load forecasting [3]. In literature, both classical (time-series
methods) and computational intelligence methods are applied for
electrical load forecasting [4]. Both methods have their limitations. The
former classical methods are blamed for their limited ability to handle
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non-linear data. On the other hand, computational intelligence methods
are criticized for problems like handcrafted features, limited learning
capacity, impotent learning, inaccurate appraisal, and insufficient
guiding significance. Although, there are some existing machine
learning models applied for electric load forecasting, which partially
resolve the aforementioned problems and have improved performance
due to the use of ingenious design [5]. A suitable mechanism is required
to solve the aforementioned problems because low forecast accuracy
results in huge economic loss. One percent increase in the forecast error
will cause a 10 million increase in the overall utility cost. Therefore,
electric utility companies are trying to develop a fast, accurate, robust,
and simple short-term electric load forecasting model. Moreover, ac-
curate forecasting can also be beneficial for the detection of potential
faults and reliable grid operation.

Over the last two decades, numerous load forecasting models have
been developed due to its application in the decision making of the
power grid. Boroojeni et al. proposed a generalized method to model
off-line data that have different seasonal cycles (e.g., daily, weekly,

quarterly, and annually). Both seasonal and non-seasonal load cycles
are modeled individually with the help of auto-regressive and moving-
average (ARMA) components [6]. Li et al. investigated ensemble sub-
sampled support vector regression (ESSVR) for forecasting and esti-
mation of load [7]. A deep belief network restricted Boltzmann machine
(RBM) is used for electric load forecasting. The network reduced the
forecast error with affordable execution time [8]. Hong et al. forecasts
the electric load of Southeast China with the help of the hybrid model
based on seasonal recurrent support vector regression (SRSVR) model
and chaotic artificial bee colony algorithm (CABCA). The performance
of the model is validated by comparing to the auto-regressive integrated
moving average (ARIMA) model [9]. Though, these references provide
a good study for future electric load forecasting. However, the load of a
microgrid is more volatile, containing high frequency, and sharp var-
iation as compared to a load of the power grid. Moreover, the previous
literature focuses on feature engineering and traditional methods like
decision tree (DT), ARIMA, and ANN. Although, the DT confronts
overfitting problems, means DT outperforms in training and worst in

Nomenclature

AMI Advanced metering infrastructure
ANN Artificial neural network
AEMO Australian energy market operator
ARMA Aut-regressive and moving-average
BP Back propagation
CS-SVM Cuckoo search algorithm based SVM
CS Cuckoo search algorithm
CRNN Convolutional recurrent neural network
DRNN Deep recurrent neural network
DR Demand response
DWT Discrete wavelet transform
ESSVR Ensemble subsampled support vector regression
FFI Fruit-fly immune algorithm
GWDO Genetic wind driven optimization
x Fine tuning
Ft Forecasted load values
g Gravitational constant

+F i( )pr 1 Global best solution according to fitness function
E Historical electric load data

Hadamard product
Ei Input discrete random discrete variable
p E E( , )i j

t Joint probability of two discrete variables
LSTM Long short-term memory
LM Levenberg-Marquardt
MILP Mixed integer linear programming
MAPE Mean absolute percentage error
MI E E( , )i j

t Mutual information between the two variables
NFIS Neuro-fuzzy inference system
PSO Particle swarm optimization
RRMSE Relative relative root mean error
RTP Real time pricing
RMSE Root mean square error
RBF-ELM Radial basis function-ELM
y wT y Style factored
SVM Support vector machine
Ek

n Second target discrete random variable, which is
average value

SRSVR Seasonal recurrent support vector regression
Sz Supplementary variable, which is second target vari-

able
Ej

t Target discrete random variable
RT Universal gas constant

+x i( )new
n 1 Updated position

vi Velocity
AHLM Adaptive hybrid learning model
AFC-ANN Accurate fast converging-ANN
ARIMA Auto-regressive integrated moving average
BPNN BP neural network
b̄ Bias
w w w, ,v y h Corresponding layer weights
CABCA Chaotic artificial bee colony algorithm
CRBM Conditional restricted Boltzmann machine
a Dynamic bias of visible layer
b Dynamic bias of hidden layer
ELM Extreme learning machine
FCM Fuzzy C means
FCRBM Factored conditional restricted Boltzmann machine
FF x i( ( ))new Fitness function of position
FF v i( ( )) Fitness function of velocity

Frictional coefficient
GA Genetic algorithm
HEMS Home energy management system
h wT h Hidden factored
I rt Irrelevancy threshold
H E E( , )t Joint entropy of two discrete variables
LSSVM Least squares SVM
F i( )pr Local best solution according to fitness
MEDEA Modified EDE
MMI Modified mutual information technique
MI-ANN Mutual information artificial neural network
NREL National renewable energy laboratory

Number of hours under consideration
Xnew Position
RBM Restricted Boltzmann machine
Rt Redundancy threshold
RNN Reglet neural network
ReLU Rectified linear unit
SG Smart grid
SSA Singular spectrum analysis
SSVR Subsampled support vector regression
X Selected candidate inputs
Tt Target load values
El

m Third target discrete random variable, which is
moving average

+v i( )n 1 Updated velocity
v wT v Visible factored
WNN Wavelet neural network
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forecasting, and ANN face limited generalization capability and it is
hard to control its convergence rate. Also, these learning models are not
suitable for large data because their performance is compromised as the
size of data increases. Moreover, in addition to feature engineering,
there is also a need to integrate the optimization module with forecaster
for outstanding performance.

In this regard, a novel hybrid model for short-term electric load
forecasting is proposed. The main contributions of this paper are de-
monstrated as follows:

1. A novel hybrid forecast model composed of modified mutual in-
formation (MMI), factored conditional RBM (FCRBM), and genetic
wind driven optimization (GWDO) techniques is proposed for short-
term electric load forecasting. The aforementioned techniques are
integrated in a coordinated modular framework to construct the
proposed hybrid model.

2. Based on the existing mutual information (MI) technique [10], a
new MMI technique for feature selection is proposed. The proposed
MMI technique works systematically on both linear and non-linear
load time series data and rank the candidate inputs according to
their information value to select key features, and discard irrelevant
and redundant features to overcome the problem of curse of di-
mensionality.

3. Auxiliary variables are proposed for our MMI feature selection
technique based on four joint discrete variables.

4. A deep learning technique FCRBM is adapted, which is empowered
via learning to forecast the day and week-ahead electric load.

5. A GWDO algorithm is proposed, which is a hybrid of genetic algo-
rithm (GA) and wind-driven optimization (WDO) algorithm. The
proposed algorithm has a global powerful search capability and fast
convergence rate.

6. The adjustable parameters of both data pre-processing and feature
selection module, and the training and forecasting module are fine-
tuned by our proposed GWDO algorithm. The purpose is to optimize
the performance of the proposed model.

7. The proposed model is tested on historical hourly load data of three
USA power grids: FE, Dayton, and EKPC. Results utilizing the pro-
posed model have proven more accurate when compared to the
benchmark models like Bi-level, MI-artificial neural network (MI-
ANN), accurate fast converging-ANN (AFC-ANN), and long short-
term memory (LSTM) in terms of accuracy and convergence rate.

The remaining sections of this paper are arranged in the following
manner: related work is presented in Section 2. The proposed system
model is demonstrated in Section 3. Simulation results are discussed in
Section 4. At the end, the paper is concluded in Section 5. The acronyms
and symbols used in this work are listed in NOMENCLATURE.

2. Related work

Short-term electric load forecasting normally covers the hours to
week prediction horizon and is crucial in the decision making of the
power grid especially at large scales, where countries and groups of
countries have common power systems such as the European Union. In
literature, both statical models and machine learning models are com-
monly used for short-term load forecasting. To well understand the
state of the art short-term load forecasting models, these models are
classified into two categories: single models that do not use feature
engineering and optimization techniques with forecasters; hybrid
models that use an integrated framework of feature engineering, fore-
casting, and optimization techniques. The detail discussion is as fol-
lows:

2.1. Single short-term load forecasting models

The main assumption for these single models is that only the

forecaster model is used to forecast the future electric load. Authors
proposed distributed methods in [11] to forecast the future load using
weather information. The power system is divided into two subnet-
works according to weather variations. Moreover, separate forecasting
models, i.e., ARIMA and grey are established for both subnetworks. The
adapted models are evaluated by comparing with the traditional models
using two performance metrics, i.e., relative root mean square error
(RRMSE) and mean absolute percentage error (MAPE).

A deep recurrent neural network (DRNN) based model is proposed
to forecast the household load [12]. This method overcomes the pro-
blems of overfitting created by classical deep learning methods. The
results show that DRNN outperforms the existing methods like ARIMA,
SVR, and convolutional RNN (CRNN) by 19.5%, 13.1%, and 6.5%, re-
spectively, in terms of RMSE. In [13], long short-term memory RNN
(LSTM-RNN) based framework is proposed to forecast the future re-
sidential load. The accuracy of the proposed framework is enhanced by
embedding appliance consumption sequences in the training data. The
proposed framework is validated on the real-world data. However, the
authors focus only on accuracy while the convergence rate and com-
putational complexity are ignored. A demand response (DR) scheme
based on real-time pricing (RTP) is proposed in [14] for industrial fa-
cilities. The scheme adopted ANN for forecasting the future prices for
global time horizon optimization. The energy cost minimization is fa-
cilitated by price forecasting and is formulated by mixed-integer linear
programming (MILP). The proposed framework performance analysis is
carried out by the practical case study of steel powder manufacturing.
Simulation results illustrate that hourly ahead DR is better than a day
ahead DR, with an improved ability to satisfy industrial demand with
reducing cost while satisfying targets. Authors in [15] presented a
probabilistic forecasting model to forecast solar power, electrical en-
ergy consumption, and netload across the seasonal variations and
scalability. Dynamic Gaussian process and Quantile regression models
are employed on the data of metropolitan area Sydney, Australia for
probabilistic forecasting. Simulation results depict that the proposed
model outperforms in all three scenarios of forecasting: solar power
generation, electricity consumption, and netload. Authors in [16], in-
vestigated the recency effect of electricity load forecasting using pre-
ceding hours load and temperature. The aim is to determine lagged
hourly temperature and daily moving average temperature to enhance
forecast accuracy. The data used for network training and validation is
of global energy competition 2012. The recency effect is investigated in
three scenarios: aggregated level geographic hierarchy, bottom level
geographic hierarchy, and individual level hours of the day. However,
accuracy is enhanced at the cost of model complexity. In [17], proposed
a long-term forecasting model to improve the relative forecast accuracy
of electric utility resource integrated planning. The analysis was con-
ducted on twelve Western US electric utility in the mid-2000s for both
peak and normal energy consumption. Though single models are robust
and fast converging, however, their accuracy is still low and not up to
the required level.

2.2. Hybrid short-term load forecasting models

In hybrid models, the feature engineering and optimization modules
are integrated with the forecaster module to improve the forecast ac-
curacy and are suitable for the situation where accuracy is of prime
importance. In [18], the authors presented an intelligent model to
forecasts the load on distributed generation (DG) and examine the
power supply structure. First, the support vector machine (SVM) and
fruit-fly immune (FFI) algorithm are used to predict DG load. Second, a
combined neural network and a polynomial regression model are used
for power supply structure analysis about hourly load and weather
factors. Finally, the impact of DG on the regional power system struc-
ture is analyzed in terms of load reduction on the main electric grid
station. This combined intelligent model has a low-performance error
and strong generalization. However, higher accuracy is achieved at the
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cost of slow convergence rate and high computational complexity.
Authors in [19], proposed an IoT-based deep learning system to

forecast the future load with high precision. Moreover, the proposed
method also qualitatively analyzed influencing factors such as variable
climates, temperature, humidity, and social conventions that have a
great impact on the forecast. However, the transfer of a huge amount of
data on existing communication infrastructure is challenging.

In [20], the adaptive hybrid learning model (AHLM) is proposed to
forecast the intensity of solar irradiation. The linear and dynamic be-
havior of data are captured by time-varying and multiple layer linear
models. Also, a hybrid model of backpropagation (BP), GA, and neural
network is used to learn the non-linear behavior of the data. The pro-
posed AHLM learn linear, temporal, and non-linear behavior from the
off-line data and predict the intensity of the solar with more precision.
The proposed model outperforms for both short- and long-term forecast
horizons.

To optimally harvest the potential of solar energy, forecasting of
solar power is indispensable. Thus, the least absolute shrinkage and
selection operator model is proposed for forecasting solar energy gen-
eration [21]. The proposed model is trained using historical weather
data aiming not only to reduce prediction error but also to reveal the
weather variables’ significance in model training for forecasting. An
algorithm is developed based on a single index, least absolute
shrinkage, and selection operator models that maximize Kendall ’s
coefficient to estimate forecasting model coefficients. The goal of this
algorithm is to ignore less important variables and increase the sparsity
of the coefficient vector. With the proposed model, either prediction
accuracy is improved or tradeoff between accuracy and complexity is
achieved. However, accuracy is improved at the cost of more high
system complexity.

For short-term load prediction, a hybrid model is proposed in [22].
This model is based on improved empirical mode decomposition,
ARIMA, and wavelet neural network (WNN) optimized by the FFI op-
timization algorithm. For performance demonstration of the proposed
model electric load data of Australian and New York electricity market
are used. Simulation results show that the proposed model prediction is
more accurate as compared to the existing models.

In [23], a deep learning-based electric load prediction model is
proposed to forecast the future load. The proposed model extracts ab-
stracted features using stacked denoising auto-encoders technique.
With these abstracted features, the SVR model is trained to forecast the
future load. The proposed model is evaluated by comparing it with
plain SVR and ANN in terms of accuracy improvement.

The ANN model is used to forecast the hourly energy consumption
of buildings in the Sugimoto Campus of Osaka City University, Japan
[24]. The presented model is trained with Levenberg-Marquardt (LM)
and BP algorithms. The six parameters are given as input such as dry
bulb, humidity, temperature, global hourly irradiance, previous hourly,
and weekly energy consumption. The accuracy of the proposed model is
evaluated in terms of correlation coefficient and RMSE. Simulation
results illustrate that RMSE is largest in the science and technology area
of the university campus as compared to the humanities college area
and old liberal arts area.

A novel type of hybrid system based on artificial intelligence is
discussed in [25] to forecast 24 h load profile of the Polish grid station.
The proposed hybrid system was tested on the off-line data of Poland
and a few other countries. The MAPE varies from 1.08% to 2.26% in
this scenario depending on the country. In the paper [26], an ensemble
model based on empirical mode decomposition algorithm and deep
learning is proposed for load forecasting. The proposed model is tested
and validated on the electrical energy consumption datasets of the
Australian energy market operator (AEMO). Moreover, the electric
energy consumption data is decomposed into intrinsic mode functions

(IMF) and the proposed model was used to model each of the IMF to
improve the forecast accuracy. An autocorrelation function is for se-
lecting input parameters and least squares SVM (LSSVM) is for fore-
casting is discussed in [27]. The main contribution of the paper is to
provide a fully automated machine learning model without human in-
tervention to forecast the future load. A hybrid incremental learning
approach is proposed in [28], that is composed of discrete WT (DWT),
empirical mode decomposition, and random vector functional link
network (RVFLN), is discussed for short-term load forecasting. To
evaluate the proposed model, the AEMO electricity load data is used.
Simulation results depict that the proposed system is effective as
compared to eight benchmark prediction methods.

In the paper [29], an extreme learning machine (ELM) model based
on a mixed kernel for future load forecasting is discussed. The half-hour
resolution electric load data is used to validate the proposed model.
This the electric load data of the state of New South Wales, Victoria and
Queensland in Australia. Simulation results illustrate that our proposed
method is better as compared to the existing three methods like radial
basis function-ELM (RBF-ELM), UKF-ELM, and mixed-ELM in terms of
accuracy.

In [30], the authors proposed a hybrid of ELM and new switching
delayed particle swarm optimization (PSO) algorithm for short-term
load forecasting. The weights and biases are optimized with new
switching delayed algorithm. Tanh function is used as an activation
function because it has a better generalization problem and avoids the
unnecessary hidden nodes and overtraining problem. Experimental re-
sults show that the proposed model outperforms the RBF neural net-
work. The proposed model is successfully applied for short-term load
forecasting in the power system.

A novel hybrid model, which is a combination of singular spectrum
analysis (SSA), SVM, and cuckoo search (CS) algorithm, is proposed in
[31] to forecast the future load. The historical data is pre-processed
with the help of SSA. The pre-processed data is fed to the SVM model to
forecast the future load and performance is optimized with the help of
the CS algorithm. The performance of the proposed model is evaluated
in terms of accuracy by comparing it with SVM, CS-SVM (CS-SVM),
SSA-SVM (SSA-SVM), ARIMA, and BP neural network (BPNN).

In [32], the clustering-based hybrid model is proposed to predict the
hourly electricity demand of hotel buildings. The operating buildings
are non-stationary because of irregular electric temporal features. The
on-line modified predictor model is proposed. The model is a combi-
nation of SVR and wavelet decomposition algorithm, which takes ex-
tracted training samples as input by fuzzy C means (FCM). The pro-
posed model has improved accuracy as compared to the traditional
models.

A deep neural network model is adopted for short-term load and
probability density forecasting in [33]. The proposed model is eval-
uated on electricity consumption case studies of three Chinese cities for
the year 2014. The simulation results demonstrate that: (i) deep
learning-based model has better forecast accuracy relative to random
forest and gradient boosting model, (ii) temperature, weather, and
other environmental variables have a significant impact on electricity
consumption, and iii) the probability density forecasting method can
provide a high-quality prediction.

In [34], a hybrid forecast model is proposed, which is a combination
of feature extraction technique and two-stage forecast engine. The two-
stage forecast engine using Ridgelet neural network (RNN) and Elman
neural network to provide accurate predictions. The optimization al-
gorithm is applied to optimally select the control parameters for the
forecast engine.

Authors in [35] proposed a short-term load forecasting model based
on SSVR. The main objective is to improve relative forecast accuracy
and efficiency. The relative forecast accuracy and efficiency are
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improved by giving the output of the forecast module to optimization
module for fine-tuning of parameters. However, the forecast accuracy is
improved at the cost of computational complexity.

A hybrid model of GA and non-linear AR with an exogenous neural
network is proposed for short and medium-term forecasting in [36]. To
fine-tune input parameters for the proposed model statistical and pat-
tern recognition-based schemes are employed. The GA is used for se-
lection weights and biases for the training of the neural network. The
proposed model is validated by comparing it with the existing models
such as average with exogenous inputs and regression tree models.

In [37], data-analytic based framework is proposed to forecast solar
energy. The proposed framework is developed and validated on eight
years (2005–2012) large dataset of a golden site of USA with a one-
minute resolution taken from the national renewable energy laboratory
(NREL). The uniqueness of this method is that data preprocessing is
performed using integrated serial time-domain analysis coupled with
multivariate filtering.

A short-term load forecasting framework based on dynamic mode
decomposition is proposed in [38]. The proposed model improves

prediction accuracy with the help of dynamic mode decomposition and
extreme value constraint method.

Authors in [39] proposed robust short-term load forecasting fra-
mework with automatic data cleansing methods for distribution feeders
load forecasting. A day-ahead building level load forecasting model
based on deep learning is proposed [40]. The proposed deep learning
model is validated by comparing with traditional models in terms of
accuracy. An integrated framework of VMD, LSTM, and Bayesian op-
timization algorithm is proposed in [41]. The purpose of this model is
outperforms exiting models in terms of both accuracy and stability. A
hybrid model of modified multi-objective cuckoo search algorithm
(CSA) and GNRR is proposed in [42]. The proposed model is tested on
Australia energy market operator (AEMO) real-time load data in com-
parison to the existing models in terms of forecast accuracy.

Authors proposed a hybrid approach to forecasting the electricity
production from solar panel-based microgrid in [43]. The hybrid model
is based on GA, PSO, and neuro-fuzzy inference systems (NFIS). The
proposed model is tested on real-time power generation data obtained
from gold wind microgrid found in Beijing. The forecasting models

Table 1
Recent and relevant work brief summary in terms of strategies, objectives, repository, limitations, and critical remarks.
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must have the ability to learn non-linear behavior of the consumers
forms historical data most efficiently to forecast the future electric load.
In this regard, ANN is one of the machine learning techniques mostly
used to forecast future electric load due to easy and flexible im-
plementation [44]. However, the performance of ANN is highly de-
pendent on adjustable tuning parameters such as learning rate, number
of layers, and number of neurons in the layers. The learning algorithms
for training neural networks such as gradient descent, multivariate AR,
and BP algorithm may suffer from premature convergence and over-
fitting [45]. To cure the aforementioned problems, hybrid forecast
strategies in literature have been proposed. However, hybrid forecast
strategies have improved modeling capabilities as compared to non-
hybrid methods. Still, there is a problem of slow convergence and high
execution time due to many adjustable parameters. In [46], the authors
have used a Bi-level strategy, which is based on ANN and differential
evolutionary algorithm (DEA) for electric load forecasting. An AFC-
ANN and modified enhanced differential evolutionary algorithm
(MEDEA) [47] based strategy is proposed to forecast the future load
[10].

However, these strategies are highly dependent on the modular’s
knowledge and experience. Moreover, the performance of the aforesaid
strategies is satisfactory for small data size and their performance is
compromised as the size of data increases. There is no mechanism
proposed to handle the large data (big data) and in real life, the data
size is increasing dramatically. The proposed model has better perfor-
mance as compared to existing ANN and linear regression-based
models. The related work is comprehensively summarized in Table 1.

Three conclusions can be drawn from the above mentioned recent
and relevant work: (i) there is no universal forecast model, which is
perfect in all perspective, though, some models are better for some
objectives and some conditions, (ii) there is a problem of overfitting,
means a model outperforms in training and worst in forecasting, and
(iii) there is a trade-off between forecast accuracy and convergence
rate, when forecast accuracy is increased convergence rate will be
compromised and vice versa. In this regard, a novel hybrid forecast
model is proposed, which is an integrated framework of three modules:
(i) MMM based data pre-processing and feature selection module, (ii)
FCRBM based training and forecasting module, and (iii) GWDO based
optimization module. The proposed model aims to perform high-quality
electric load forecasting ranging from the day ahead to a week ahead of
time horizon with comparatively high convergence speed for the deci-
sion making of SG.

3. Proposed system model

In this study , a novel hybrid model based on MMI technique, deep

learning (FCRBM) model, and GWDO algorithm is proposed for short-
term electric load forecasting, as shown in Fig. 1. This work is the ex-
tension of our earlier conference paper [48]. The earlier work is only for
day-ahead load forecasting while the current is for both day and week
ahead load forecasting with the novel concept of scalability. The pro-
posed model is an integrated framework of three modules as illustrated
in Fig. 1: (i) MMI based data pre-processing and feature selection
module (ii) FCRBM based training and forecasting module, and (iii) our
proposed GWDO algorithm-based optimization module. The entire
implementation process of the proposed model is illustrated in in Fig. 2.

Before performing electric load forecasting, it is indispensable to
identify the factors, which influence the load behavior. These influen-
cing parameters include weather factors (humidity, temperature, and
dew point), occupancy patterns, and calendar indicators. However, it is
not feasible to apply all aforementioned candidate inputs to FCRBM
based training and forecasting module. Moreover, the candidate inputs
include ineffective features that complicate and degrade the perfor-
mance of the model. Thus, the candidate inputs are first feed into the
data pre-processing phase. . Then, pre-processed data is feed to the MMI
based feature selection phase. The output of data pre-processing and
features selection module is given as an input to training and fore-
casting module based on FCRBM. The output of this module is feed into
optimization module based on GWDO, which is a novel contribution of
this study. The optimization module first calculates error between the
real and forecasted value. Then, it minimizes the error in order to make
accurate predictions. The detailed demonstration of the proposed
system model is as follows:

3.1. Data pre-processing and feature selection module

Let, E is the historical hourly load data of USA power grids taken
from publicly available PJM electricity market, which is represented in
the matrix form. This hourly electric load data is feed into the data pre-
processing and feature selection module.

=

…
…
…
…

…

E

E E E E E x
E E E E E x
E E E E E x
E E E E E x

E y E y E y E y E x y

(1, 1) (2, 1) (3, 1) (4, 1) ( , 1)
(1, 2) (2, 2) (3, 2) (4, 2) ( , 2)
(1, 3) (2, 3) (3, 3) (4, 3) ( , 3)
(1, 4) (2, 4) (3, 4) (4, 4) ( , 4)

. . . . .. . . . .. . . . .
(1, ) (2, ) (3, ) (4, ) ( , ) (1)

where E (1, 1) is the electric load of first day first hour, E (2, 1) is the
electric load of second day first hour, such that E x y( , ) is the electric
load of xth day and yth hour. The data is of four years having 1460 days
and each day has 24 hours. The dimension of the data set is ×1460 24.

Fig. 1. Schematic diagram and main procedure of the FCRBM based proposed system model for hour and week ahead electric load prediction with hour resolution.
Single arrowhead denotes one-way data flow and double arrowhead denotes two-way data flow.
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Thus, the total number of data samples is 35040. The rows show the
number of hours and columns show the number of days. The value of x
is linked with the tuning of FCRBM training, larger the value of x im-
plies fine-tuning and vice versa. There is a performance tradeoff be-
tween fine-tuning and convergence rate. This input data is first passed
through the data cleansing phase, where defective and missing values
are replaced by the average value of preceding days’ electric load data.

The cleansed data is passed through the normalization phase because
the data have outliers and the weight matrix is extremely small, to
make the overall weighted sum within the limits of the activation
function. This data pre-processing is depicted in Fig. 2. In machine
learning, feature selection is a process to select abstracted features and
filter out unimportant features. The feature selection process has sig-
nificant importance because it helps to avoid the curse of

Fig. 2. Implementation process of the proposed system model an integrated framework of three modules: (i) 3.1 MMI based data pre-processing and feature selection
module, (ii) 3.2 FCRBM based training and forecasting model, and (iii) 3.3 GWDO based optimization module.
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dimensionality and highly contributes to accuracy. In this regard, the
entropy-based MI technique is a feature selection technique, which is
used in a variety of taxonomy problems such as image processing,
cancer categorization, image recognition, and data mining. The MI
features selection technique is developed and used by [45,10] for fea-
tures selection. In this work, the MMI feature selection technique is
developed by devising modifications in MI technique subjected to ac-
curacy and convergence rate. The cleansed and normalized data is
passed through the MMI based feature selection phase to rank the in-
puts according to their information values. The ranked inputs are fil-
tered using the irrelevancy and redundancy filters to remove irrelevant
and redundant information. The subset of selected features contains
best and more relevant information which highly contributes to the
accuracy. First, the existing MI features selection technique is discussed.
Then, the MMI feature selection technique will be discussed.

MI is a measure between two (possibly multi-dimensional) random
variables E and Et , that quantifies the amount of information obtained
about one random variable, through the other random variable. The
information found commonly in two random variables is of importance
in our work, which is defined as mutual information between the two
variables. The mathematical description is as follows:

=H E E p E E p E E i j( , ) ( , )log ( ( , )) , {1, 2},t

i j
i j

t
i j

t
2

(2)

where p E E( , )i j
t is the joint probability of two random variables, Ei is

the input random variables, and Ej
t is the target value. In feature se-

lection, the information which is common among both variables are
indispensable, which is formulated as in [45]:

=MI E E p E E
p E E

p E p E
( , ) ( , )log

( , )
( ) ( )

,t

i j
i j

t i j
t

i j
t2

(3)

where MI E E( , )i j
t is used to find the mutual information between the

two variables Ei and Ej
t . In this case, the candidate inputs are ranked by

MI technique between input and the target value. From entropy-based
MI technique, the following three conclusions can be drawn:

• If =MI E E( , ) 0i j
t , it indicates that the discrete random variables Ei

and Ej
t are irrelevant.

• If MI E E( , )i j
t has some large value, it indicates that discrete random

variables Ei and Ej
t are highly relevant.

• If MI E E( , )i j
t has small value, it indicates that discrete variables Ei

and Ej
t are lightly related.

In [45], among the training data samples last value of every hour of
the day is chosen as the target value. The target value or last sample is
very close to next day with respect to time and seems logical, however,
it may cause serious forecast errors due to ignorance of average beha-
vior while forecasting. In [10], the authors have used average value in
addition to the target value because both average and target values are
of equal importance. The Eq. (3) is modified for three variables as
follows:

=

×

MI E E E p E E E( , , ) ( , , )

log ,

t n

i j k
i j

t
k
n

p E E E

p E p E p E2
( , , )

( ) ( ) ( )
i j

t
k
n

i j
t

k
n (4)

where Ek
n is the average value, which indicates the second target.

However, the average value will be very low, if some values in the
selected features are very small. The addition of average with other two
parameters is not enough because it may cause serious prediction
problems due to ignorance of moving average. Thus, the Eq. (3) is
modified for four variables as follows:

=

×

MI E E E E p E E E E( , , , ) ( , , , )

log ,
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p E E E E

p E p E p E p E2
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i j
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n
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m

i j
t

k
n

l
m (5)

where the third target value El
m is moving average. The Eq. (5) is ex-

panded for binary encoded information as in Eq. (6) as:
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A supplementary Sz variable is defined in Eq. (10) to find the joint and
individual probabilities, such that:

= + + +S E E E E E E E E8 4 2 , , , {0, 1},z
t n m t n m (7)
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where ……S {0, 1, 2, 3, ,15}z . Sz counts the number of zeros, ones,
twos, threes, and finally the number of fifteens. From the aforesaid
discussion, the joint and individual probabilities can be find using Eq.
(8) subjected to Eq. (6) as:
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The Eqs. (5)–(8) are the MMI technique equations, which are used
to find the mutual information between the four variables such as
E E E, ,i

t n and, Em. The candidate inputs are ranked based on this mu-
tual information to remove irrelevant and redundant information. The
MMI feature selection technique provides twofold benefits: (a) selection
of suitable and relevant features minimizes the forecast error, and (b)
selection of the subset of features improves the convergence rate. The
step by step procedure of overall data pre-processing and feature se-
lection module is illustrated in Fig. 2.

Before feeding them to the training and forecasting module, the
selected features are split into training, testing, and validation data
samples for training and validation of the FCRBM. The selected subset
of key features is given as an input to the training and forecasting
module based on FCRBM.

3.2. FCRBM based training and forecasting module

This module aims to devise a framework that is enabled via learning
to forecast day and week ahead electric load. In this regard, in litera-
ture, a wide variety of short-term load forecasting models such as dy-
namic regression, transfer function, and AR heteroscedastic, have been
proposed. Although, these models are capable of linear predictions and
the behavior of load is non-linear and stochastic. To solve the aforesaid
problems, the authors used novel strategies for short-term load fore-
casting in [49,50] based on ANN. These forecasting strategies are
capable to handle the non-linear behavior of electric load and forecast
the future load. However, the performance of these strategies is

compromised with the increase in data size. The deep learning models
such as RBM, conditional RBM (CRBM), and FCRBM have better per-
formance at the large datasets. These models have deep layers layout,
which can capture the highly abstracted features. Thus, FCRBM from
the pool of deep learning models is selected to forecast the future
electric load because it provides high-quality forecasting. The training
and forecasting module is based on FCRBM, which is an indispensable
part of our proposed hybrid forecasting model. At first, the architecture
of the FCRBM model is determined. The model has four layers along
with neurons, i.e., hidden layers, visible layer, style layer, and history
layer as depicted in [51]. As discussed earlier, the FCRBM network must
be trained and enabled via learning to forecast the future electric load.
Generally, learning is of 3 types, i.e., supervised, unsupervised, and
reinforced. Since in our scenario, we use historical load data, thus we
use supervised learning. In literature, many supervised learning acti-
vation functions exist such as sigmoidal, tangent hyperbolic, rectified
linear unit (ReLU), and SoftMax. However, we chose the ReLU activa-
tion function as shown in Eq. (9) because it has faster convergence and
also overcomes the problem of vanishing gradient.

=f X b X b

f X b X b
( , ) max (0, ( , ))

( , ) 1 if ( , ) 0
0 otherwise, (9)

where X is the selected candidate inputs, b indicates bias value, and is
for steepness control of activation function. The FCRBM architecture is
described in detail in the following subsection.

3.2.1. Architecture of the FCRBM
FCRBM is an extension of the CRBM introduced by Taylor and

Hinton in [52]. In FCRBM [53], they add the concept of factor and
styles to mimic multiple human actions (as shown in Fig. 3). Its con-
trastive divergence does not suffer from the issue of vanishing gradient
as in back-propagation. It has a rich, distributed hidden state which
permits the simple and exact inference that helps in preserving the
temporal information present in the electrict load time series data [54].
We proposed a new way to adopt deep learning technique, i.e., FCRBM
for short-term load forecasting, where the successive layers take the
output from preceding trained layers and improve the forecast accu-
racy.

The FCRBM comprises of four layers as shown in Fig. 3: visible layer
v, history layer u, hidden layer h, and style layer y. The visible and
history layers are real-valued while the hidden layer is binary. These
layers are significant for the proper operation of FCRBM. The visible
layer is responsible for encoding the present time series data to forecast
the future value, while the history layer will encode historical time
series data. Hidden layer is responsible for the discovery of significant
features that are required for analysis. The different styles and para-
meters, which are essential for forecasting, are embedded into the style
layer. The last style layer represents multiple parameters that are im-
portant for load forecasting. The relation and interaction between the
layers, weights, and factors are expressed by an error function as:

=E v u h w v a h b v w y w h w( , , ; ) {( ) ( ) ( )}T T T v T y T h (10)

where E is the error function, v wT v is the visible factored, y wT y is the
style factored, and h wT h is the hidden factored. It is a hadamard
product used for element wise multiplication. The a and b elements
represent dynamic biases associated with visible and hidden layers,
respectively, which are defined as follows:

= +
= +

a a A u A y A
b b B u B y B

{( ) ( )}
{( ) ( )}

v T u T y T

h T u T y T (11)

where w w w, ,v y h are weights of the corresponding layers and
A A A B B B, , , , ,v u y h u y are the connections of the corresponding layers to
factors, these are also known as model free parameters. The connections
and weights are the parameters that must be fine tuned and trained for

Fig. 3. Architecture of factored conditional restricted Boltzmann machine,
where u is the history input layer, h is the hidden layer, y is the style layer, and v
is the visible output layer.
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accurate performance of deep learning technique FCRBM.

3.2.2. Conditional probability
In case of FCRBM, conditional probability determines probability

distribution of one layer conditioned over all the remaining layers. In
first case, we define probability distribution of hidden layer conditioned
over all the remaining layers p h v u y( | , , ). There is no intra-layer con-
nection between the neurons of the same layer, but inter-layer con-
nection between the neurons of different layers. The conditional
probability of hidden layer can be calculated as:

= +p h v u y b w v w y w( | , , ) ReLU[ {( ) ( )}]h T v T y (12)

where ReLU is defined as in Eq. (9).
For all inputs, probability of hidden layer neurons is evaluated using

ReLU activation function.
In second case, we determine the probability of the visible layer i.e.,

p v h u y( | , , ) conditioned over remaining layers. The conditional prob-
ability of visible is defined as:

= +p v h u y a w h w y w( | , , ) ReLU[ {( ) ( )}]v T h T y (13)

Finally, we define the joint probability distribution of visible and
hidden layer neurons conditioned on history layer, style layer, and
model parameters …p v h u y( , | , , ). The restriction is that there is no
intra-layer connection between the neurons while there is only inter-
layer connection between the neurons of different layers. The joint
probability is calculated as:

… = + ×
+

p v h u y b w v w y w
a w h w y w

( , | , , ) ReLU([^ {( ) ( )}]
[^ {( ) ( )}])

h T v T y

v T h T y (14)

Eq. (14) represents the joint probability distribution of visible and
hidden layer neurons.

3.2.3. FCRBM weights and biases learning rules
We adopt stochastic gradient decent for learning and updating rules

to overcome the problem of vanishing gradient. Moreover, the sto-
chastic gradient decent converges faster and avoids overfitting on large
datasets as compared to batch gradient decent and mini-batch gradient
decent algorithms [55]. The gradient of the weights for each layer is
calculated as:
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y E
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For each layer the gradient of connections are calculated as follows:
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The gradient of dynamic biases are as follow:
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The weights of corresponding layers are updated as:
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The connections are updated as follows:
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The dynamic biases are updated as follows:

= +
= +

+

+

a a a
b b b

t t t

t t t

1

1 (22)

where Eq. (19) is weight update equation for each layer, Eqs. (20)–(22)
are dynamic biases update equations.

The training and learning procedure iterate for the number of
epochs to enable the network for forecasting. The FCRBM is enabled via
training and learning to forecast the future electric load. Moreover, the
performance metric, MAPE, is considered as validation error, which is
formulated as follows:

= ×
=

MAPE T F
T

1 | |
| |

100,
t

t t

t1 (23)

where Tt represents actual load values, Ft indicates forecasted load va-
lues, and represents number of hours under consideration. Further
details of the FCRBM working and learning activation function can be
found in [56]. The output of this module is fed into the GWDO based
optimization module to further improve forecast accuracy with an af-
fordable convergence rate.

3.3. GWDO algorithm based optimization module

The objective of this module is to minimize the forecast error with
an affordable convergence rate. The authors used DEA [45] and MEDEA
[10] with forecaster module to optimize the performance of the model.
Both algorithms have a slow convergence rate and low precision [57].
Furthermore, the aforementioned algorithms are trapped in local op-
timum [57]. To remedy the aforementioned problems, the GWDO al-
gorithm is proposed, which is a hybrid of WDO and GA algorithms [58].
The step by step procedure is given in Fig. 4 and their parameters are
listed in Table 2. The proposed algorithm takes benefit from the fea-
tures of both algorithms (GA and WDO). The GA enables the diversity of
the population and WDO has faster convergence. The GWDO based
module receives the forecasted load with some error that is minimum as
per the ability of FCRBM. This forecasting error can be minimized with
the proposed GWDO optimization technique. The sole objective of
GWDO based optimization module is to fine-tune the adjustable para-
meters of the model to improve forecast accuracy with an affordable
convergence rate. In other words, the optimization module is integrated
with the FCRBM based forecaster to minimize error and improve the
forecast accuracy. Thus, error minimization (MAPE) becomes the ob-
jective function of the optimization module, which is mathematically
modeled as:

…Mini MAPE j j( ) {1, 2, 3, . },
R I,t rt (24)

where Rt and Irt are the thresholds of redundancy and irrelevancy, re-
spectively. The GWDO based optimization module feed the optimized
values of the thresholds to MMI based feature selection module to select
key features from the given data. The integration of the optimization
module to the forecasting model increase the execution time, which
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disturbs the convergence rate because of the tradeoff between execu-
tion time and convergence rate. The integration of the optimization
module is favorable for applications where forecast accuracy is of pri-
mary importance and vice versa. Our proposed GWDO algorithm
among the heuristic algorithms is preferred due to the following rea-
sons: (i) it avoids premature convergence and (ii) it has faster con-
vergence. The GWDO algorithm randomly produce population, i.e., the
position 25 and velocity matrix 26 as in [58]:

=
= >

x if rand sig j i
x if rand sig j i

1 (1) ( , )
0 (1) ( , )

new

new (25)

= × ×v v rand populationsize nmax 2 ( ( , ) 0.5)i (26)

The fitness functions for velocity and position are defined as in Eqs.
(27) and (28) because the position vector and velocity vector will now
be updated by comparing random number (rand (.) [0, 1] with fitness
function (FF (.) [0, 1]) as shown in Eq. (29).

=
+

FF v i MAPE x i
MAPE v i MAPE x i

( ( )) ( ( ))
( ( )) ( ( ))

new

new (27)

=
+

FF x i MAPE v i
MAPE x i MAPE v i

( ( )) ( ( ))
( ( )) ( ( ))new

new (28)

If random number is less than fitness function, then load value will
be update because our objective function is minimization problem.

=F i
v i if rand i FF v i
x i if rand i FF x i

( )
( ) ( ) ( ( ))

( ) ( ) ( ( ))pr
n

new
n

new (29)

Now there is question mark, why load update has influence on random
value. We cure this problem by eliminating the load update influence
on random number, now the comparison is between fitness function of
the candidate input to the previous one as shown in Eq. (30). Thus, the
selected load update value will have high quality of accuracy.
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+
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F i

v i FF v i

x i FF x i
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( ) ( ( ))

( ) ( ( ))
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n
v i

v i
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n x i

x i new
1

1
( )

( )

1 ( )
( )

n
n

newn

new
n

max

max (30)

With the integration of GWDO algorithm based optimization
module, the accuracy is improved while the convergence rate is com-
promised because there is a trade-off between accuracy and con-
vergence rate. However, the proposed short-term load forecasting
model outperforms the existing models like MI-ANN [45], Bi-level [46],
and AFC-ANN [10] in terms of accuracy. It is because ANN-based
models have a shallow layout and their performance is degraded with
the increase in datasize. The FCRBM has improved performance with
the large datasize due to its deep layers’ layout.

4. Simulation results and discussions

For performance evaluation of the proposed short-term load fore-
casting model, simulations are conducted in MATLAB. In simulations,
the proposed model is compared with existing short-term load fore-
casting models like AFC-ANN [10], MI-ANN [45], Bi-level [46], and
LSTM. The aforementioned models are selected as benchmark models
due to their closer architectural similarities with the proposed model.
Two performance metrics i.e., accuracy and convergence rate are used
for performance evaluation. Accuracy is defined as accuracy = 100-
MAPE and is measured in percentage (%). The execution time is defined
as the time spent by the forecasting strategy during execution and is
measured in seconds. The detailed demonstration is as follows.

4.1. Description of the benchmark dataset

Historical hourly electric load data is taken from publicly available
PJM electricity market [59] for performance evaluation of the proposed

Fig. 4. Our proposed GWDO algorithm used in the optimization module to
optimize error performance.

Table 2
Parameters used in simulations.

Parameters Values

Population size 24
Number of decision variables 2

Number of iterations 100
RT 3
g 0.2

0.4
dimMin −5
dimMax 5
vmax 0.3
vmin −0.3

crossoverrate 0.9
mutation rate 0.1
Learning rate 0.0001
Weight decay 0.0002
Momentum 0.5
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model. Different variables (humidity, temperature, dew point, and hour
of the day) that are typical for the training forecasting model are used.
The four years (2014–2017) historical hourly load data of three USA
power grids is depicted in Fig. 5. The data consists of humidity, tem-
perature, and load values. It is obvious from Fig. 5 that the FE power
grid is serving the highly-dense area and have the highest load profile
while the Dayton power grid has less energy consumption with a lower
load profile as compared to FE power grid and more energy con-
sumption as compared to EKPC power grid. The dataset is passed
through a data pre-processing and feature selection module where ab-
stracted features from the given dataset are extracted. The subset (ab-
stracted features) of data is divided into training, and testing data
samples. The three years of data are used to train the network and one
year of data is used to test the network. The training data samples are
from 2014–2016, consisting of the input vector, the aforementioned
variables, and the target measured load profile. The testing data sam-
ples are of one-year 2017, which is used for testing purpose. The vali-
dation data samples are constructed from training data samples to ex-
ploit validation error for proper parameter selection.

4.2. Evaluation of learning curve

A learning curve is a graphical representation that compares the
performance of models on training and testing data samples across a
varying number of epochs. The learning curve enables us to verify
whether the chosen model is learning or memorizing the data. When
there are high variance and bias, the learning curve is bad, and the
model is memorizing not learning. Due to high bias, the training and
testing error rate is high and the convergence rate is fast. In contrast,
the high variance occurs, when the gap between training and testing
errors is large. In both cases, the model is not good and leads to poor
generalization. Overfitting occurs when the test error at a certain point
starts to increase and training error decrease. This shows that the model
is memorizing but not learning. Thus, such a model leads to bad gen-
eralization. The overfitting problem is prevented using the dropout
method and early stopping [60]. However, in the case of FCRBM, it is
observed that the testing error gradually decreases as the training error
does for FE, Dayton, and EKPC power grids of USA as illustrated in

Fig. 6. Thus, the FCRBM model resolved the problem of overfitting.
Moreover, the gap between training error and testing error is small and
there is no bias and variance as clearly depicted in Fig. 6 for FE, Dayton,
and EKPC power grids of USA.

4.3. Evaluation of actual and forecasted load for day ahead time horizon
with hour resolution

The day ahead forecasted electric load profile with hour resolution
of the proposed model and benchmark models like LSTM, MIANN, Bi-
level, and AFC-ANN for three USA power girds (EKPC, FE, and Dayton)
is depicted in Fig. 7. It is obvious from the graphical illustration that all
prediction models (our proposed FCRBM based model, and four
benchmark models like Bi-level, MI-ANN, AFC-ANN, and LSTM) are
capable to capture non-linear behavior of load from historical data and
based on the captured behavior forecast future electric load. It is also
clear that models like Bi-level, MI-ANN, AFC-ANN, and LSTM use the
sigmoidal activation function, Levenberg-Marquardt, and multi-variate
AR algorithms for network training. In contrast, the adapted FCRBM
network is trained using ReLU due to having small execution time. It is
verified from the Fig. 7 that the proposed model closely follows the
target curve as compared to the benchmark models like AFC-ANN, Bi-
level, MI-ANN, and LSTM for all three USA power grids: FE, Dayton,
and EKPC. The day ahead with hour resolution forecasted load nu-
merical observations in terms of MAPE for EKPC, FE, and Dayton,
power grids are listed in Tables 3–5, respectively. The day ahead with
hour resolution forecasted load based on FCRBM based model, and
benchmark models like LSTM, MI-ANN, Bi-level, and AFC-ANN nu-
merical results are listed in Table 3. The MAPE error of the proposed
FRCBM based model is 0.4920%, the Bi-level model is 2.5186%, the MI-
ANN model is 4.3371%, the AFC-ANN model is 2.4741%, and LSTM
model is 2.7582%. The MAPE of the proposed model is lower as com-
pared to benchmark models, lower MAPE results in better accuracy.
The forecasted load of AFC-ANN is better than Bi-level, and Bi-level is
better than MI-ANN in terms of accuracy. The reason for this com-
paratively better performance is that AFC-ANN model used MEDEA for
optimization and the Bi-level model used DEA for optimization, which
improves the forecast accuracy by minimizing the error. Although, this

Fig. 5. Historical hourly electric load data of four years ranging from 2014 to 2017 of FE, Dayton, and EKPC power grids of the USA with month and year indexes.

Fig. 6. The deep learning model FCRBM learning evaluation on FE, Dayton, and EKPC power grids hourly load data ofthe USA.
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improved accuracy is obtained by paying a cost of increased execution
time. The proposed FCRBM based model outperforms Bi-level, MI-ANN,
and AFC-ANN models due to the integration of MMI based feature se-
lector and GWDO based optimization module in the framework. Nu-
merical observations of the proposed model and benchmark models in
terms of MAPE for the Dayton power grid are in Table 4. The MAPE of
the proposed model, Bi-level, MI-ANN, AFC-ANN, LSTM is 0.4998%,
3.0220%, 4.4988%, 2.7633%, and 2.5432%, respectively. Furthermore,
the future forecasted load based on FCRBM is more accurate as com-
pared to the benchmark models like Bi-level, MI-ANN, AFC-ANN, and
LSTM due to the use of MMI technique, deep neural network, and
GWDO algorithm. The numerical results of the proposed model and
benchmark models in terms of MAPE for the EKPC power grid are listed
in Table 5. The MAPE of the proposed model is 0.4525%, Bi-level is
2.4202%, MI-ANN is 4.3280%, AFC-ANN is 2.7530%, and LSTM is
3.1234%. Thus, the proposed model is better as compared to the
benchmark models like Bi-level, MI-ANN, AFC-ANN, and LSTM in terms
of forecast accuracy. From the results and discussion, we conclude that

the proposed deep learning model FCRBM has superior performance as
compared to benchmark models. The average numerical results in terms
of MAPE of FCRBM based model for FE power grid is 0.4920%, for
Dayton power grid is 0.4998%, and for EKPC power grid 0.4525%,
which is less as compared to the benchmark models.

4.4. Evaluation of proposed and benchmark models in terms of convergence
rate

Performance evaluation of the proposed deep learning model
FCRBM and benchmark models like LSTM, MI-ANN, Bi-level, and AFC-
ANN in terms of convergence rate for three USA power grids (EKPC, FE,
and Dayton) is depicted in Fig. 8. There is a trade-off between forecast
accuracy and convergence rate. The accuracy of the Bi-level strategy
has improved as compared to the MI-ANN model. This improved ac-
curacy is achieved at the cost of more execution time because DEA
based optimization module is integrated with a Bi-level strategy. It is
obvious from the Fig. 8a, b, and c that the execution time is increased

Fig. 7. Day ahead with hour resolution evaluation of actual and predicted load in terms of forecast accuracy of the proposed FCRBM based model and benchmark
models like LSTM, MI-ANN, AFC-ANN, and Bi-level on FE, Dayton, and EKPC power grids hourly load data of the USA.

Table 3
Evaluation of actual and predicted load (P.load) in terms of MAPE of the proposed FCRBM based model and benchmark models like LSTM, MI-ANN, AFC-ANN, and
Bi-level on FE power grid hourly load data of USA.

Proposed and benchmark electric load forecasting models

Hours Target (kW) FCRBM AFC-ANN Bi-level MI-ANN LSTM

P.load MAPE P.load MAPE P.load MAPE P.load MAPE P.load MAPE
(kW) (%) (kW) (%) (kW) (%) (kW) (%) (kW) (%)

00.00 671.8923 668.5829 0.4925 683.5829 1.7400 645.5829 3.9157 650.8923 3.1255 651.8030 3.3370
01.00 677.7923 674.4538 0.4926 660.4538 2.5581 665.4538 1.8204 630.7923 6.9343 661.4538 2.9028
02.00 700.3192 703.7687 0.4926 715.7687 4.6806 635.7687 9.2173 725.3192 3.5698 720.4538 2.2302
03.00 734.5654 738.1835 0.4926 725.1835 2.0696 745.1835 1.4455 759.5654 3.4034 726.1835 2.4302
04.00 760.9115 757.1637 0.4924 743.1637 1.5923 777.1637 2.1359 740.9115 2.6284 776.1637 2.9528
05.00 767.4346 771.2146 0.4925 755.2146 4.4182 795.2146 3.6199 797.4346 3.9091 793.2146 3.3252
06.00 754.7077 758.4250 0.4915 730.4250 4.0749 745.4250 0.8851 750.7077 2.3554 752.7077 2.8520
07.00 744.3962 748.0627 0.4923 714.0627 4.3205 755.0627 1.2300 740.3962 0.5300 720.0627 3.3250
08.00 731.4692 727.8664 0.4925 699.8664 1.7461 718.8664 1.4329 735.4692 0.5373 716.8664 1.9325
09.00 717.9577 714.4214 0.4926 705.4214 0.7822 700.4214 1.7229 720.9577 0.5468 701.4214 1.8530
10.00 706.0231 709.5006 0.4926 700.5006 1.4930 730.5006 2.4425 760.0231 6.4179 609.2220 2.6538
11.00 699.6500 703.0961 0.4925 710.0961 3.9058 699.0961 0.0792 685.6500 2.0010 687.6500 1.9825
12.00 703.1462 706.6095 0.4925 730.6095 2.8131 725.6095 3.1947 707.6213 0.9955 690.6500 2.2350
13.00 726.0346 729.6107 0.4926 705.6107 2.2272 750.6107 3.3850 710.1462 1.9283 715.1462 2.2102
14.00 753.6077 757.3196 0.4925 755.3196 1.1835 700.3196 7.0711 740.0346 1.5923 735.0346 2.2152
15.00 768.8000 772.5867 0.4925 785.5867 3.6695 785.5867 2.1835 765.6077 1.2435 787.5867 2.3250
16.00 768.8538 772.6408 0.4925 740.6408 4.5999 778.6408 1.9500 720.8000 6.6503 780.6408 2.2523
17.00 754.7423 751.0248 0.4925 720.0248 1.1768 740.0248 0.1325 763.8538 2.1325 745.0248 1.9525
18.00 730.7462 734.3454 0.4926 739.3454 1.5246 690.9239 1.3136 755.7423 3.7790 742.3454 2.2980
19.00 703.3885 699.9239 0.4926 715.9239 2.1544 670.9967 1.7721 743.7462 8.8145 715.3885 3.3528
20.00 682.3577 678.9967 0.4925 760.9967 1.2358 655.1795 1.6650 765.3885 0.1153 695.3577 1.9982
21.00 661.9192 665.1795 0.4926 676.1795 2.1540 630.0057 1.0182 682.3577 2.1151 680.1795 3.3850
22.00 672.6923 676.0057 0.4926 681.0057 1.2822 630.1417 6.3456 675.9192 0.4797 682.6923 2.5650
23.00 676.6923 680.1750 0.4926 686.5057 1.4502 633.1530 5.8778 680.6923 1.1893 696.6923 3.1252

Avg. 0.4920 2.4741 2.9186 4.3371 2.7582
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Table 4
Evaluation of actual and predicted load (P.load) in terms of MAPE of the proposed FCRBM based model and benchmark models like LSTM, MI-ANN, AFC-ANN, and
Bi-level on Dayton power grid hourly load data of USA.

Proposed and benchmark electric load forecasting models

Hours Target (kW) FCRBM AFC-ANN Bi-level MI-ANN LSTM

P.load MAPE P.load MAPE P.load MAPE P.load MAPE P.load MAPE
(kW) (%) (kW) (%) (kW) (%) (kW) (%) (kW) (%)

00.00 175.3224 178.5829 0.7112 168.5829 3.9927 171.5829 2.2816 169.8923 3.4223 188.5829 2.2345
01.00 171.7990 174.8321 0.7463 165.4538 3.4925 167.4538 2.3284 165.7923 3.4925 185.8321 2.1342
02.00 167.3052 174. 8754 0.3909 166.7687 0.5977 164.7687 1.7932 162.3192 2.9886 145.2520 3.3250
03.00 169.5134 163.5234 0.7699 162.1835 4.1298 178.1835 2.9498 162.5654 2.1298 155.3825 3.0325
04.00 173.9342 166.3543 0.2999 183.1637 5.7497 179.1637 2.8748 180.9115 3.0248 155.3250 2.9980
05.00 182.3425 177.3824 0.6453 178.2146 2.1938 207.2146 4.6453 198.4346 2.1938 160.4346 3.1028
06.00 200.6273 185.9854 0.4955 211.4250 2.4834 218.4250 3.4894 208.7077 3.9879 204.6273 1.5328
07.00 212.3932 197.9234 0.4125 218.0627 2.8249 209.0627 2.8249 221.3962 4.2374 199.9234 1.3125
08.00 213.4532 209.4321 0.9372 213.8664 0.0999 217.8664 1.8743 215.4692 0.9372 229.4321 3.5325
09.00 212.4507 215.9234 0.4054 217.4214 1.8739 216.4214 1.8739 222.9577 4.2163 200.4507 2.3829
10.00 209.2531 216.8374 0.4134 220.5006 3.7691 215.5006 1.8845 220.0231 3.7691 218.2031 3.0029
11.00 205.1459 209.9321 0.4313 221.0961 5.7250 200.0961 2.8625 217.6500 3.8167 200.1459 1.6320
12.00 201.1462 206.5612 0.4624 197.6095 2.8997 206.6095 2.4373 198.6213 3.4122 188.1462 3.6740
13.00 197.3546 208.6578 0.4899 210.6107 4.4697 203.6107 2.4832 209.1462 3.9731 180.3260 3.9982
14.00 193.6077 204.3196 0.5182 203.3196 3.0363 192.3196 3.0363 200.0346 1.5182 200.3852 2.2352
15.00 192.8345 194.9134 0.5477 187.5867 3.0954 194.5867 0.5159 189.6077 2.0636 202.6332 2.1235
16.00 191.8538 190.7534 0.5556 202.6408 4.1853 195.6408 1.0371 200.8000 4.1482 205.3219 3.3780
17.00 192.7023 195.8034 0.5649 203.0248 6.2597 192.0248 0.0019 201.8538 5.2164 202.9876 3.6872
18.00 198.7462 194.3480 0.0173 203.3454 5.7070 192.9239 3.0260 201.7423 4.6694 182.3854 2.8876
19.00 205.2805 208.4567 0.4612 185.9239 6.5564 188.9967 8.2803 187.7462 5.5477 195.3290 2.2327
20.00 200.3075 203.6512 0.4933 181.9967 5.6898 190.1795 4.9775 189.3885 7.7932 192.3075 1.6288
21.00 200.9032 187.9234 0.5735 210.1795 4.9775 210.0057 6.2301 213.3577 6.4708 191.8765 1.9923
22.00 190.6533 187.5915 0.6644 203.2057 6.8187 210.1417 10.4902 200.9192 5.2451 201.7135 2.3589
23.00 180.2476 177.7435 0.6644 175.5057 2.7740 178.1530 1.1096 170.6923 3.4383 188.6534 1.9789

Avg. 0.49980 2.7633 3.0220 4.4988 2.5432

Table 5
Evaluation of actual and predicted load (P.load) in terms of MAPE of the proposed FCRBM based model and benchmark models like LSTM, MI-ANN, AFC-ANN, and
Bi-level on EKPC power grid hourly load data of USA.

Proposed and existing forecast models

Hours Target (kW) FCRBM AFC-ANN Bi-level MI-ANN LSTM

P.load MAPE P.load MAPE P.load MAPE P.load MAPE P.load MAPE
(kW) (%) (kW) (%) (kW) (%) (kW) (%) (kW) (%)

00.00 132.8923 130.5829 0.5115 136.5019 4.5345 138.9234 3.1741 139.8923 5.4414 145.8923 3.3520
01.00 131.7923 129.4538 0.5175 123.3458 2.2763 128.4832 6.0700 127.7923 3.0350 146.8923 3.2523
02.00 131.3192 129.7687 0.5232 123.6685 1.5232 129.8723 6.0929 127.3192 3.0464 120.3192 2.9268
03.00 132.5654 130.1835 0.5094 145.1345 3.7736 127.1358 9.8113 139.5654 5.2830 122.4328 2.0280
04.00 138.9115 136.1637 0.4396 147.1370 1.4396 140.1378 6.4784 142.9115 2.8793 125.9115 2.2025
05.00 147.4346 145.2146 0.3575 153.1106 1.3575 149.4634 4.0724 151.4346 2.7149 135.2823 2.1345
06.00 161.2115 157.4474 0.4751 168.4130 3.7127 167.4013 4.3315 168.2115 4.3315 144.2115 3.3542
07.00 167.7077 163.4250 0.3895 170.2327 1.7922 170.2723 1.7922 173.7077 3.5843 157.7077 3.0119
08.00 163.3962 161.0627 0.2239 175.6234 3.0598 168.8602 7.3435 170.3962 4.2837 153.3962 2.9812
09.00 150.4692 148.8664 0.3293 150.4214 1.9939 153.1423 0.7231 150.4000 0.0692 162.6750 3.1234
10.00 145.9577 143.4214 0.3769 157.0023 6.1961 154.5602 8.2614 153.9577 5.5076 136.7750 2.2105
11.00 141.0231 139.5006 0.4124 140.3261 0.7062 142.6101 0.7062 140.0231 0.7062 130.3210 3.2650
12.00 138.6500 136.0961 0.4477 146.9501 4.3432 144.1295 5.7910 146.6500 5.7910 128.3210 2.2860
13.00 136.1462 130.6095 0.4003 130.6107 2.9335 132.6071 4.4003 130.1462 2.4003 125.6540 3.1032
14.00 130.0346 128.6107 0.5313 130.3602 3.0626 134.3106 0.3421 136.0346 4.5939 115.2430 3.1028
15.00 130.6077 128.3196 0.5286 127.5671 1.5286 128.5027 2.2930 123.6077 5.3503 121.7710 2.1025
16.00 130.8000 130.5867 0.2133 124.6418 9.2307 130.4082 4.5853 124.8903 4.5853 119.8351 2.2540
17.00 133.8538 131.6408 0.4959 143.3485 2.9917 137.1348 7.4793 139.8038 4.4876 121.7652 3.2501
18.00 137.7423 135.0248 0.4519 146.3541 1.4519 139.3924 6.5338 141.0233 2.9039 122.3542 3.2340
19.00 142.7462 140.3454 0.4057 137.9339 2.1085 139.2267 3.5142 137.7053 3.5142 120.6856 3.2523
20.00 152.3885 150.9239 0.3131 149.9557 1.9697 149.1534 1.9697 147.3885 3.2828 140.3456 3.1236
21.00 151.3577 149.9967 0.3166 156.9520 1.3166 153.2357 3.2916 157.3577 3.9499 135.7654 3.3675
22.00 136.9192 134.1795 0.4636 135.1257 2.9271 140.1017 0.7318 139.9192 2.1953 121.9512 2.9925
23.00 132.6923 130.0057 0.5123 133.5231 4.5369 138.1530 0.9830 139.6053 5.5199 115.8976 3.0025

Avg. 0.4525 2.4202 2.7530 4.3280 3.1234
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from 16.52s to 102s as the optimization module is integrated with the
forecasting module. The proposed model has reduced execution time
due to the following reasons: (i) highly abstractive features are given as
an input to training and forecasting module which reduces the network
training time, (ii) it replaces the sigmoidal activation function by ReLU,
and (iii) it uses GWDO instead of MEDEA algorithm due to relatively
faster convergence rate. The proposed short-term load forecasting
model decreased the execution time from 102s to 43s due to aforesaid
modifications in the existing models like LSTM, AFC-ANN and Bi-level.
In contrast, the MI-ANN has excellent performance in terms of con-
vergence rate as compared to the other models like FCRBM, LSTM, AFC-
ANN, and Bi-level because no optimizer is integrated with MI-ANN
model. This behavior is clearly depicted in Fig. 8.

4.5. Scalability analysis

The scalability analysis enables us to identify whether the proposed
model is scalable or its suitable for the said scenarios. The Eq. (1), is
manipulated for input samples, features, weights, and bias, and corre-
spondingly forecasted results are analyzed to the scalability of the
model. For example, the weights of the input samples are increased but
the number of input samples remains constant and the proposed fore-
cast strategy is not affected. On the other hand, if the number of input
samples (size of the data), influencing factors, and forecast-horizon are
increased, that affect the convergence rate and accuracy. The impact of
these factors on the accuracy and convergence rate is illustrated in
Fig. 9 in terms of error (Fig. 9)a and execution time (Fig. 9b) for the
proposed and benchmark models. The accuracy analysis of the general
trend in terms of error performance is shown in Fig. 9a. The forecast
accuracy is improving as the number of data samples is increasing from
0 to 720 and tends toward stability as the number of samples is further

increased. The results are obvious because the value of x in the Eq. (1) is
tightly linked with the training of FCRBM. During the training process,
a large value of x means fine-tuning and results in improved forecast
accuracy. Similarly, Fig. 9b illustrates number of samples vs execution
time. It is verified from Fig. 9b that as the number of samples increases
the execution time increases and vice versa. The proposed model has
relatively high scalability as compared to the benchmark models due to
the use of MMI technique for features selection , FCRBM for forecasting,
and GWDO algorithm for optimization.

4.6. Evaluation of actual and forecasted load forthe week ahead time
horizon with the hour resolution

The weekly forecasted load profile based on the proposed model and
benchmark models for three USA power grids like EKPC, FE, and Dayton
is illustrated in Fig. 10. The FE power grid predicted load profile for a
week ahead with hour resolution is illustrated in Fig. 10a. In this figure,
some portion is zoomed to clearly show the behavior of the proposed and
benchmark models. It is obvious from the figure that the proposed
FCRBM based prediction closely follow the target load as compared to
LSTM, MI-ANN, Bi-Level, and AFC-ANN models. The hourly and daily
MAPE values for the proposed and benchmark models are listed in
Table 3. It is noticed that FCRBM has the best accuracy as compared to
existing models. The week ahead forecasted load profile with hour re-
solution based on our proposed model FCRBM, and benchmark models
like LSTM, MI-ANN, Bi-level, and AFC-ANN for Dayton power grid is
depicted in Fig. 10b. It is seen that FCRBM based predicted load closely
follow the target load as compared to the benchmark models. The pro-
posed model has better accuracy due to the use of deep layer layout and
GWDO based optimization module. Similarly, in the case of EKPC power
grid’s, the proposed deep learning model FCRBM weekly predicted load

Fig. 8. Comparative evaluation of the proposed FCRBM based model and benchmark models like LSTM, MI-ANN, AFC-ANN, and Bi-level in terms of convergence rate
on FE, Dayton, and EKPC power grids hourly load data of USA.

Fig. 9. Scalability evaluation of the proposed model and benchmark models like MI-ANN, LSTM, AFC-ANN, and Bi-level in terms: (a) error performance and (b)
convergence rate.
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profile with hour resolution is more accurate as compared to the
benchmark models as depicted in Fig. 10c. Overall, it is observed that the
proposed short-term load forecasting model has a more accurate pre-
diction as compared to the benchmark models.

4.7. Cumulative distribution function of error

The cumulative distribution function (CDF) of error for three power
grids: FE, Dayton, and EKPC is illustrated in Fig. 11 for the proposed
and benchmark models like AFC-ANN [10], MI-ANN [45], Bi-level [46],
and LSTM. The proposed short-term load forecasting model is better in
all three scenarios in terms of error CDF, i.e., FE, Dayton, and EKPC as
compared to the benchmark models. It is not surprising because the
FCRBM has more computational power as compared to the AFC-ANN,
MI-ANN, Bi-level, LSTM models. Roughly, when the error is under 4%,
the Bi-level has better performance than MI-ANN, and worst perfor-
mance than AFC-ANN; although FCRBM predicts more reliably even if
there is more uncertainty because their deep layers structure can cap-
ture the highly abstracted features. Thus, the proposed model would be
a better choice for the utility in the decision making of the SG because
its performance is improving with the increase in datasize.

5. Conclusion

Accurate electric load forecasting is indispensable due to its appli-
cation in decision making and operation of the power grid. With ac-
curate electric load forecasting, operators are capable to develop an
optimal market plan to enhance the economic benefits of energy
management. Therefore, it is a significant goal for scholars and industry
to develop a forecasting model, which provides robust, stable, and ac-
curate load forecasting. However, the performance of individual pre-
diction models is not satisfactory due to inherent limitations. In con-
trast, hybrid models fully utilize the advantages of individual models
and have improved performance. In this paper, a short-term load

forecasting model is proposed. The proposed model is an integrated
framework of three modules: (i) MMI based data pre-processing and
feature selection module, (ii) deep learning technique FCRBM base-
dtraining and forecasting module, and (iii) GWDO algorithm based
optimization module. The proposed model is tested on historical hourly
electric load data of three USA power grids: FE, EKPC, and Dayton. The
proposed model is validated by comparing it to the four benchmark
models like MI-ANN, Bi-Level, AFC-ANN, and LSTM in terms of accu-
racy and convergence rate. Based on results, performance evaluation,
and discussion the following conclusions are made can be drawn. First,
the proposed MMI technique improves the forecast accuracy by se-
lecting desired features from data and then feed these desired features
into into the training module based on FCRBM to reduce the training
time. Secondly, the adapted deep learning model FCRBM is trained and
enabled via learning to forecast day and week-ahead electric load with
hour resolution. Thirdly, the proposed GWDO algorithm is used in the
optimization module to fine-tune the adjustable parameters of the
model. Finally, the proposed model is validated by comparing it with
four benchmark models like AFC-ANN, Bi-level, MI-ANN, and LSTM
models. In short, the proposed electric load forecasting model outper-
forms MI-ANN by 31.2%, Bi-level by 17.3%, and AFC-ANN by 4.7% in
terms of forecast accuracy. Furthermore, the average execution time of
the proposed model is 52s, the AFC-ANN model is 58s, the Bi-level
model is 102s, MI-ANN model is 16.5s, and LSTM model is 63s. Thus, it
is concluded that the proposed model outperforms benchmark models
in terms of both forecast accuracy and convergence rate.
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Fig. 10. Performance evaluation of actual and predicted load for the week ahead with hour resolution of the proposed model and benchmark models like MI-ANN,
LSTM, AFC- ANN, and Bi-level in terms of accuracy on FE, Dayton, and EKPC power grids hourly load data of USA.

Fig. 11. CDF of daily MAPE evaluation of the proposed model and benchmark models like Bi-level, AFC-ANN, MI-ANN, and LSTM on FE, Dayton, and EKPC power
grids hourly load data of the USA.

G. Hafeez, et al. Applied Energy 269 (2020) 114915

16



Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] Javaid Nadeem, Hafeez Ghulam, Iqbal Sohail, Alrajeh Nabil, Alabed Mohamad
Souheil, Guizani Mohsen. Energy efficient integration of renewable energy sources
in the smart grid for demand side management. IEEE Access 2018;6:77077–96.
https://doi.org/10.1109/ACCESS.2018.2866461.

[2] Xiao Liye, Shao Wei, Wang Chen, Zhang Kequan, Haiyan Lu. Research and appli-
cation of a hybrid model based on multi-objective optimization for electrical load
forecasting. Appl Energy 2016;180:213–33. https://doi.org/10.1016/j.apenergy.
2016.07.113.

[3] Alahakoon Damminda, Xinghuo Yu. Smart electricity meter data intelligence for
future energy systems: A survey. IEEE Trans Industr Inf 2016;12(1):425–36. https://
doi.org/10.1109/TII.2015.2414355.

[4] Hernandez Luis, Baladron Carlos, Aguiar Javier M, Carro Belén, Sanchez-Esguevillas
Antonio J, Lloret Jamie, Massana Joaquim. A survey on electric power demand
forecasting: future trends in smart grids, microgrids and smart buildings. IEEE
Commun Surveys Tut 2014;16(3):1460–95. https://doi.org/10.1109/SURV.2014.
032014.00094.

[5] Rahman Aowabin, Srikumar Vivek, Smith Amanda D. Predicting electricity con-
sumption for commercial and residential buildings using deep recurrent neural
networks. Appl Energy 2018;212:372–85. https://doi.org/10.1016/j.apenergy.
2017.12.051.

[6] Boroojeni Kianoosh G,Hadi Amini M., Bahrami Shahab, Iyengar SS, Sarwat Arif I,
Karabasoglu Orkun. A novel multi-time-scale modeling for electric power demand
forecasting: from short-term to medium-term horizon. Electric Power Syst Res 2017;
142:58–73. doi:10.1016/j.epsr.2016.08.031.

[7] Li Yanying, Che Jinxing, Yang Youlong. Subsampled support vector regression en-
semble for short term electric load forecasting. Energy 2018;164:160–70. https://
doi.org/10.1016/j.energy.2018.08.169.

[8] Dedinec Aleksandra, Filiposka Sonja, Dedinec Aleksandar, Kocarev Ljupco. Deep
belief network based electricity load forecasting: an analysis of Macedonian case.
Energy 2016;115:1688–700. https://doi.org/10.1016/j.energy.2016.07.090.

[9] Hong Wei-Chiang. Electric load forecasting by seasonal recurrent SVR (support
vector regression) with chaotic artificial bee colony algorithm. Energy
2011;36(9):5568–78. https://doi.org/10.1016/j.energy.2011.07.015.

[10] Ahmad Ashfaq, Javaid Nadeem, Guizani Mohsen, Alrajeh Nabil, Ali Khan Zahoor.
An accurate and fast converging short-term load forecasting model for industrial
applications in a smart grid. IEEE Trans Industr Inf 2016;13(5):2587–96. https://
doi.org/10.1109/TII.2016.2638322.

[11] Liu Dunnan, Zeng Long, Li Canbing, Ma Kunlong, Chen Yujiao, Cao Yijia. A dis-
tributed short-term load forecasting method based on local weather information.
IEEE Syst. J. 2018;12(1):208–15. https://doi.org/10.1109/JSYST.2016.2594208.

[12] Shi Heng, Minghao Xu, Li Ran. Deep learning for household load forecasting—a
novel pooling deep RNN. IEEE Trans Smart Grid 2018;9(5):5271–80. https://doi.
org/10.1109/TSG.2017.2686012.

[13] Kong Weicong, Dong Zhao Yang, Hill David J, Luo Fengji, Xu Yan. Short-term re-
sidential load forecasting based on resident behaviour learning. IEEE Trans Power
Syst 2018;33(1):1087–8. https://doi.org/10.1109/TPWRS.2017.2688178.

[14] Huang Xuefei, Hong Seung Ho, Li Yuting. Hour-ahead price based energy man-
agement scheme for industrial facilities. IEEE Trans Industr Inf
2017;13(6):2886–98. https://doi.org/10.1109/TII.2017.2711648.

[15] van der Meer DW, Munkhammar J, Widén J. Probabilistic forecasting of solar
power, electricity consumption and net load: investigating the effect of seasons,
aggregation and penetration on prediction intervals. Sol Energy 2018;
171:397–413. doi:10.1016/j.solener.2018.06.103.

[16] Wang Pu, Liu Bidong, Hong Tao. Electric load forecasting with recency effect: a big
data approach. Int J Forecast 2016;32(3):585–97. https://doi.org/10.1016/j.
ijforecast.2015.09.006.

[17] Carvallo, Pablo Juan, Larsen Peter H, Sanstad Alan H, Goldman Charles A. Long
term load forecasting accuracy in electric utility integrated resource planning.
Energy Policy 2018; 119:410–422. doi:10.1016/j.enpol.2018.04.060.

[18] Xu Xiaomin, Niu Dongxiao, Wang Qiong, Wang Peng, Dash Wu Desheng. Intelligent
forecasting model for regional power grid with distributed generation. IEEE Syst J
2017;11(3):1836–45. https://doi.org/10.1109/JSYST.2015.2438315.

[19] Li Liangzhi, Ota Kaoru, Dong Mianxiong. When weather matters: IoT-based elec-
trical load forecasting for smart grid. IEEE Commun Mag 2017;55(10):46–51.
https://doi.org/10.1109/MCOM.2017.1700168.

[20] Wang Yu, Shen Yinxing, Mao Shiwen, Cao Guanqun, Nelms Robert M. Adaptive
learning hybrid model for solar intensity forecasting. IEEE Trans Industr Inf
2018;14(4):1635–45. https://doi.org/10.1109/TII.2017.2789289.

[21] Tang Ningkai, Mao Shiwen, Wang Yu, Nelms RM. Solar power generation fore-
casting with a LASSO-based approach. IEEE Internet Things J 2018;5(2):1090–9.
https://doi.org/10.1109/JIOT.2018.2812155.

[22] Zhang Jinliang, Wei Yi-Ming, Li Dezhi, Tan Zhongfu, Zhou Jianhua. Short term
electricity load forecasting using a hybrid model. Energy 2018;158:774–81. https://
doi.org/10.1016/j.energy.2018.06.012.

[23] Tong Chao, Li Jun, Lang Chao, Kong Fanxin, Niu Jianwei, Rodrigues Joel JPC. An

efficient deep model for day-ahead electricity load forecasting with stacked de-
noising auto-encoders. J Parallel Distrib Comput 2018; 117:267–73. doi:10.1016/j.
jpdc.2017.06.007.

[24] Yuan Jihui, Farnham Craig, Azuma Chikako, Emura Kazuo. Predictive artificial
neural network models to forecast the seasonal hourly electricity consumption for a
University Campus. Sustain Cities Soc 2018;42:82–92. https://doi.org/10.1016/j.
scs.2018.06.019.

[25] Brodowski Stanisław, Bielecki Andrzej, Filocha Maciej. A hybrid system for fore-
casting 24-h power load profile for Polish electric grid. Appl Soft Comput 2017;
58:527–39. doi:10.1016/j.asoc.2017.04.053.

[26] Qiu Xueheng, Ren Ye, Suganthan Ponnuthurai Nagaratnam, Amaratunga Gehan AJ.
Empirical mode decomposition based ensemble deep learning for load demand time
series forecasting. Appl Soft Comput 2017; 54:246–55. doi:10.1016/j.asoc.2017.01.
015.

[27] Yang Ailing, Li Weide, Yang Xuan. Short-term electricity load forecasting based on
feature selection and Least Squares Support Vector Machines. Knowl-Based Syst
2019;163:159–73. https://doi.org/10.1016/j.knosys.2018.08.027.

[28] Qiu Xueheng, Suganthan Ponnuthurai Nagaratnam, Amaratunga Gehan AJ.
Ensemble incremental learning Random Vector Functional Link network for short-
term electric load forecasting. Knowl-Based Syst 2018; 145:182–96. doi:10.1016/j.
knosys.2018.01.015.

[29] Chen Yanhua, Kloft Marius, Yang Yi, Li Caihong, Li Lian. Mixed kernel based ex-
treme learning machine for electric load forecasting. Neurocomputing 2018;
312:90–106. doi:10.1016/j.neucom.2018.05.068.

[30] Zeng Nianyin, Zhang Hong, Liu Weibo, Liang Jinling, Alsaadi Fuad E. A switching
delayed PSO optimized extreme learning machine for short-term load forecasting.
Neurocomputing 2017;240:175–82. https://doi.org/10.1016/j.neucom.2017.01.
090.

[31] Zhang Xiaobo, Wang Jianzhou, Zhang Kequan. Short-term electric load forecasting
based on singular spectrum analysis and support vector machine optimized by
Cuckoo search algorithm. Electric Power Syst Res 2017;146:270–85. https://doi.
org/10.1016/j.epsr.2017.01.035.

[32] Chen Yibo, Tan Hongwei, Berardi Umberto. Day-ahead prediction of hourly electric
demand in non-stationary operated commercial buildings: a clustering-based hybrid
approach. Energy Build 2017;148:228–37. https://doi.org/10.1016/j.enbuild.
2017.05.003.

[33] Guo Zhifeng, Zhou Kaile, Zhang Xiaoling, Yang Shanlin. A deep learning model for
short-term power load and probability density forecasting. Energy
2018;160:1186–200. https://doi.org/10.1016/j.energy.2018.07.090.

[34] Ghadimi Noradin, Akbarimajd Adel, Shayeghi Hossein, Abedinia Oveis. Two stage
forecast engine with feature selection technique and improved meta-heuristic al-
gorithm for electricity load forecasting. Energy 2018;161:130–42. https://doi.org/
10.1016/j.energy.2018.07.088.

[35] Li Yanying, Che Jinxing, Yang Youlong. Subsampled support vector regression
ensemble for short term electric load forecasting. Energy 2018;164:160–70. https://
doi.org/10.1016/j.energy.2018.08.169.

[36] Jawad Muhammad, Ali Sahibzada M, Khan Bilal, Mehmood Chaudry A, Farid Umar,
Ullah Zahid, et al. Genetic algorithm-based non-linear auto-regressive with exo-
genous inputs neural network short-term and medium-term uncertainty modelling
and prediction for electrical load and wind speed. J Eng 2018;2018(8):721–9.
https://doi.org/10.1049/joe.2017.0873.

[37] Manjili Yashar Sahraei, Vega Rolando, Jamshidi Mo M. Data-analytic-based adap-
tive solar energy forecasting framework. IEEE Syst J 2018;12(1):285–96. https://
doi.org/10.1109/JSYST.2017.2769483.

[38] Kong Xiangyu, Li Chuang, Wang Chengshan, Zhang Yusen, Zhang Jian. Short-term
electrical load forecasting based on error correction using dynamic mode decom-
position. Appl Energy 2020;261:114368https://doi.org/10.1016/j.apenergy.2019.
114368.

[39] Huyghues-Beaufond Nathalie, Tindemans Simon, Falugi Paola, Sun Mingyang,
Strbac Goran. Robust and automatic data cleansing method for short-term load
forecasting of distribution feeders. Appl Energy 2020;261:114405https://doi.org/
10.1016/j.apenergy.2019.114405.

[40] Cai Mengmeng, Pipattanasomporn Manisa, Rahman Saifur. Day-ahead building-
level load forecasts using deep learning vs. traditional time-series techniques. Appl
Energy 2019;236:1078–88. https://doi.org/10.1016/j.apenergy.2018.12.042.

[41] He F, Zhou J, Feng ZK, Liu G, Yang Y. A hybrid short-term load forecasting model
based on variational mode decomposition and long short-term memory networks
considering relevant factors with Bayesian optimization algorithm. Appl Energy
2019;237:103–16. https://doi.org/10.1016/j.apenergy.2019.01.055.

[42] Wu Zhuochun, Zhao Xiaochen, Ma Yuqing, Zhao Xinyan. A hybrid model based on
modified multi-objective cuckoo search algorithm for short-term load forecasting.
Appl Energy 2019;237:896–909. https://doi.org/10.1016/j.apenergy.2019.01.046.

[43] Semero Yordanos Kassa, Zhang Jianhua, Zheng Dehua. PV power forecasting using
an integrated GA-PSO-ANFIS approach and Gaussian process regression based
feature selection strategy. CSEE J Power Energy Syst 2018;4(2):210–8. https://doi.
org/10.17775/CSEEJPES.2016.01920.

[44] Mocanu Elena, Mocanu Decebal Constantin, Nguyen Phuong H, Liotta Antonio,
Webber Michael E, Gibescu Madeleine, Slootweg Johannes G. On-line building
energy optimization using deep reinforcement learning. IEEE Trans Smart Grid
2018;10(4):3698–708. https://doi.org/10.1109/TSG.2018.2834219.

[45] Amjady Nima, Keynia Farshid, Zareipour Hamidreza. Short-term load forecast of
microgrids by a new bilevel prediction strategy. IEEE Trans Smart Grid
2010;1(3):286–94. https://doi.org/10.1109/TSG.2010.2078842.

[46] Amjady Nima, Keynia Farshid. Day-ahead price forecasting of electricity markets by
mutual information technique and cascaded neuro-evolutionary algorithm. IEEE
Trans Power Syst 2008;24(1):306–18. https://doi.org/10.1109/TPWRS.2008.

G. Hafeez, et al. Applied Energy 269 (2020) 114915

17

https://doi.org/10.1109/ACCESS.2018.2866461
https://doi.org/10.1016/j.apenergy.2016.07.113
https://doi.org/10.1016/j.apenergy.2016.07.113
https://doi.org/10.1109/TII.2015.2414355
https://doi.org/10.1109/TII.2015.2414355
https://doi.org/10.1109/SURV.2014.032014.00094
https://doi.org/10.1109/SURV.2014.032014.00094
https://doi.org/10.1016/j.apenergy.2017.12.051
https://doi.org/10.1016/j.apenergy.2017.12.051
https://doi.org/10.1016/j.energy.2018.08.169
https://doi.org/10.1016/j.energy.2018.08.169
https://doi.org/10.1016/j.energy.2016.07.090
https://doi.org/10.1016/j.energy.2011.07.015
https://doi.org/10.1109/TII.2016.2638322
https://doi.org/10.1109/TII.2016.2638322
https://doi.org/10.1109/JSYST.2016.2594208
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1109/TPWRS.2017.2688178
https://doi.org/10.1109/TII.2017.2711648
https://doi.org/10.1016/j.ijforecast.2015.09.006
https://doi.org/10.1016/j.ijforecast.2015.09.006
https://doi.org/10.1109/JSYST.2015.2438315
https://doi.org/10.1109/MCOM.2017.1700168
https://doi.org/10.1109/TII.2017.2789289
https://doi.org/10.1109/JIOT.2018.2812155
https://doi.org/10.1016/j.energy.2018.06.012
https://doi.org/10.1016/j.energy.2018.06.012
https://doi.org/10.1016/j.scs.2018.06.019
https://doi.org/10.1016/j.scs.2018.06.019
https://doi.org/10.1016/j.knosys.2018.08.027
https://doi.org/10.1016/j.neucom.2017.01.090
https://doi.org/10.1016/j.neucom.2017.01.090
https://doi.org/10.1016/j.epsr.2017.01.035
https://doi.org/10.1016/j.epsr.2017.01.035
https://doi.org/10.1016/j.enbuild.2017.05.003
https://doi.org/10.1016/j.enbuild.2017.05.003
https://doi.org/10.1016/j.energy.2018.07.090
https://doi.org/10.1016/j.energy.2018.07.088
https://doi.org/10.1016/j.energy.2018.07.088
https://doi.org/10.1016/j.energy.2018.08.169
https://doi.org/10.1016/j.energy.2018.08.169
https://doi.org/10.1049/joe.2017.0873
https://doi.org/10.1109/JSYST.2017.2769483
https://doi.org/10.1109/JSYST.2017.2769483
https://doi.org/10.1016/j.apenergy.2019.114368
https://doi.org/10.1016/j.apenergy.2019.114368
https://doi.org/10.1016/j.apenergy.2019.114405
https://doi.org/10.1016/j.apenergy.2019.114405
https://doi.org/10.1016/j.apenergy.2018.12.042
https://doi.org/10.1016/j.apenergy.2019.01.055
https://doi.org/10.1016/j.apenergy.2019.01.046
https://doi.org/10.17775/CSEEJPES.2016.01920
https://doi.org/10.17775/CSEEJPES.2016.01920
https://doi.org/10.1109/TSG.2018.2834219
https://doi.org/10.1109/TSG.2010.2078842
https://doi.org/10.1109/TPWRS.2008.2006997


2006997.
[47] Hafeez Ghulam, Islam Noor, Ali Ammar, Ahmad Salman, Usman Alimgeer

Muhammad, Saleem Khurram. A modular framework for optimal load scheduling
under price-based demand response scheme in smart grid. Processes 2019;7(8):499.
https://doi.org/10.3390/pr7080499.

[48] Hafeez Ghulam, Javaid Nadeem, Riaz Muhammad, Ali Ammar, Umar Khalid, Iqbal
Zafar. Day Ahead Electric Load Forecasting by an Intelligent Hybrid Model Based on
Deep Learning for Smart Grid. In: Conference on complex, intelligent, and software
intensive systems. Cham: Springer, 2019. p. 36–49. doi:10.1007/978-3-030-22354-
0_4.

[49] Abedinia Oveis, Amjady Nima, Zareipour Hamidreza. A new feature selection
technique for load and price forecast of electrical power systems. IEEE Trans Power
Syst 2016;32(1):62–74. https://doi.org/10.1109/TPWRS.2016.2556620.

[50] Khwaja AS, Naeem M, Anpalagan A, Venetsanopoulos A, Venkatesh B. Improved
short-term load forecasting using bagged neural networks. Electric Power Syst Res
2015;125:109–15. https://doi.org/10.1016/j.epsr.2015.03.027.

[51] Hafeez Ghulam, Javaid Nadeem, Ullah Safeer, Iqbal Zafar, Khan Mahnoor, Ur
Rehman Aziz. Short term load forecasting based on deep learning for smart grid
applications. In: International conference on innovative mobile and internet ser-
vices in ubiquitous computing. Cham: Springer; 2018. p. 276–88. doi:10.1007/978-
3-319-93554-6_25.

[52] Taylor GW, Hinton GE, Roweis ST. Two distributed-state models for generating
high-dimensional time series. J Mach Learn Res 2011;12:1025–68.

[53] Mocanu Decebal Constantin, Bou Ammar Haitham, Lowet Dietwig, Driessens Kurt,
Liotta Antonio, Weiss Gerhard, Tuyls Karl. Factored four way conditional restricted
boltzmann machines for activity recognition. Pattern Recogn Lett 2015; 66:100–8.
doi:10.1016/j.patrec.2015.01.013.

[54] Mocanu Elena, Nguyen Phuong H, Gibescu Madeleine, Larsen Emil Mahler, Pinson
Pierre. Demand forecasting at low aggregation levels using factored conditional
restricted boltzmann machine. In: 2016 Power Systems Computation Conference
(PSCC). IEEE; 2016. p. 1–7. doi:10.1109/PSCC.2016.7540994.

[55] Introduction to various types of gradient descent. https://machinelearningmastery.
com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/ [ac-
cessed 13 Aug 2019].

[56] Mocanu Elena, Nguyen Phuong H, Gibescu Madeleine, Kling Wil L. Deep learning
for estimating building energy consumption. Sustain Energy Grids Networks
2016;6:91–9. https://doi.org/10.1016/j.segan.2016.02.005.

[57] Bao Zongfan, Zhou Yongquan, Li Liangliang, Ma Mingzhi. A hybrid global optimi-
zation algorithm based on wind driven optimization and differential evolution.
Math Probl Eng 2015;2015:608–20. https://doi.org/10.1155/2015/389630.

[58] Ghulam Hafeez, Javaid Nadeem, Iqbal Sohail, Khan Farman. Optimal residential
load scheduling under utility and rooftop photovoltaic units. Energies
2018;11(3):611. https://doi.org/10.3390/en11030611.

[59] PJM electricity market. Available online: https://www.pjm.com/ [accessed 17 Feb
2019].

[60] Srivastava Nitish, Hinton Geoffrey, Krizhevsky Alex, Sutskever Ilya, Salakhutdinov
Ruslan. Dropout: a simple way to prevent neural networks from overfitting. J Mach
Learn Res 2014;15(1):1929–58. https://doi.org/10.5555/2627435.2670313.

Ghulam Hafeez has completed his B.Sc. in Electrical
Engineering from University of Engineering and
Technology Peshawar, Pakistan, and MS in Electrical
Engineering from COMSATS University Islamabad,
Islamabad, Pakistan. He is pursuing towards Ph.D. from the
same University. Ghulam Hafeez is lifetime charted en-
gineer from Pakistan Engineering Council. Ghulam Hafeez
is working as a lecturer in the Department of Electrical
Engineering, University of Engineering and Technology,
Mardan. He has authored or co-authored over 15 peer-re-
viewed research papers in reputed international journals
and conferences. His research interests include optimiza-
tion, planning, energy management, and machine learning

applications in smart/micro grids, etc.

Khurram Saleem Alimgeer did his bachelor’s degree in IT
in 2002 and completed his MS in Telecommunications
(Gold Medal) in 2006. He did his PhD in Electrical
Engineering with specialization in Antenna design in 2014.
Currently, he is Assistant Professor at COMSATS University
Islamabad, and working as researcher in RF-Lab, COMSATS
University Islamabad, Pakistan. He is serving as editor and
reviewer of few reputed journals since 2008. He has pub-
lished more than 80 research papers at reputed journals and
conferences in the fields of Antenna Design, wave propa-
gation, mathematical modeling, Wireless Communications,
Image Processing, and Energy Management in the Smart/
Micro Grid.

Imran Khan received the B.Sc. degree in Electrical
Engineering from N.W.F.P. University of Engineering and
Technology, Peshawar, Pakistan in 2003 and M.Sc. degree
in telecommunication engineering from the Asian Institute
of Technology, Thailand, in 2007. He did Ph.D. degree at
the Telecommunications FOS, School of Engineering and
Technology, Asian Institute of Technology, Thailand, in
2010. Currently he is working as professor in Electrical
Engineering Department, University of Engineering
Technology, Mardan. His research interests include per-
formance analysis of Wireless Communication Systems,
OFDM, OFDMA, MIMO, Cooperative Networks, Cognitive
Radio Systems, and Energy Management in the Smart Grid.

G. Hafeez, et al. Applied Energy 269 (2020) 114915

18

https://doi.org/10.1109/TPWRS.2008.2006997
https://doi.org/10.3390/pr7080499
https://doi.org/10.1109/TPWRS.2016.2556620
https://doi.org/10.1016/j.epsr.2015.03.027
http://refhub.elsevier.com/S0306-2619(20)30427-X/h0235
http://refhub.elsevier.com/S0306-2619(20)30427-X/h0235
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1155/2015/389630
https://doi.org/10.3390/en11030611
https://www.pjm.com/
https://doi.org/10.5555/2627435.2670313

	Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid
	Introduction
	Related work
	Single short-term load forecasting models
	Hybrid short-term load forecasting models

	Proposed system model
	Data pre-processing and feature selection module
	FCRBM based training and forecasting module
	Architecture of the FCRBM
	Conditional probability
	FCRBM weights and biases learning rules

	GWDO algorithm based optimization module

	Simulation results and discussions
	Description of the benchmark dataset
	Evaluation of learning curve
	Evaluation of actual and forecasted load for day ahead time horizon with hour resolution
	Evaluation of proposed and benchmark models in terms of convergence rate
	Scalability analysis
	Evaluation of actual and forecasted load forthe week ahead time horizon with the hour resolution
	Cumulative distribution function of error

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References




