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Abstract
This study investigates the mechanical behaviour of laminated elastomeric bear-
ings with a low shape factor (LSF) and the dynamic response of structures
mounted on them. Axial loads have a significant influence on the mechanical
behaviour of the LSF bearings. Most of the existing theories and mechanical
models for laminated bearings cannot be employed for LSF bearings because
they disregard the important effects of axial shortening and bulging of the rubber
layers on the horizontal bearing stiffness.
In this study, a simplified model originally developed for slender rubber blocks
is employed for describing the mechanical behaviour of LSF bearings, and
validated against the experimental results on low-damping LSF bearings manu-
factured and tested at TunAbdulRazakResearchCenter (TARRC). The proposed
model is then used to simulate the seismic response of a structural prototype
mounted on the low-damping LSF bearings and tested at University of Naples
Federico II on a shaking table under horizontal seismic input. Further analyses
are carried out to evaluate how the bearing shape factor affects the dynamic and
seismic response of the prototype. The study provides some useful insight into
the complex mechanical behaviour of LSF bearings and of structures mounted
on them.

KEYWORDS
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1 INTRODUCTION

Elastomeric laminated bearings are extensively employed to isolate buildings and bridges and protect them from the
damaging effect of earthquakes. These devices consist of a number of horizontal rubber layers vulcanized to steel shims.1,2
This allows to achieve values of the vertical stiffness that are hundreds of times higher than the horizontal stiffness to be
achieved, thus ensuring low vertical deflections under permanent loadings together with high flexibility in the horizontal
direction. The shape of the rubber layers controls the bearing behaviour in terms of vertical and horizontal stiffness. The
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NOVELTY

∙ Evaluation of a mechanical model for elastomeric bearings with low shape factor (LSF).
∙ Investigation of the dynamic behaviour and seismic response of structure mounted on LSF bearing accounting
for the coupling between horizontal and vertical response.

∙ Review of the existing analytical models for describing the horizontal response of compressed bearings with
LSF.

∙ Simulation of the shaking table tests on a structural prototype mounted on the LSF bearings using simplified
numerical modelling approach.

∙ Numerical investigation of the prototype structure mounted on bearings with different shape factors.

primary shape factor S is a non-dimensional parameter used to describe the bearing geometry, and it is defined as the
ratio of the loaded area to the area free to bulge.3–5 The higher the shape factor, the stiffer the isolator in the vertical
direction. Typical values of S are in the range between 15 and 30.4 With these values, only isolation in the horizontal
plane can be achieved. However, in some applications, such as nuclear power plants, isolation in the vertical direction
could help to protect sensitive equipment and provide functionality after an earthquake event (see, e.g., ref. 6). Low-shape
factor (LSF) bearings could be used to achieve a three-dimensional seismic isolation (albeit only isotropic in horizontal
directions) and/or ensure ground-borne vibration isolation in addition to seismic isolation.2,7 Moreover, reducing the
number of rubber layers and steel plates can yield some cost savings and result in a reduction of the weight of isolators,
thus increasing the uptake of seismic isolation in low-income countries. Along the same line, fibre-reinforced elastomeric
isolators have been payed increasing interest by several researchers as a lower cost option to traditional systems.8–10
LSF bearings have been deployed in many structures and have been the object of numerous investigations over the

years. For example, the Pestalozzi school, built in 1969 in Skopje (Macedonia) on unreinforced elastomeric bearings with
a shape factor S = 0.5, can be thought as a first example of a 3D seismic isolation system.2 In 1986, Kajima Corporation
Technical Research Institute11 utilized low-shape factor bearings with S = 2.5 to support a two-story reinforced concrete
building used as acoustic laboratory, demonstrating the effectiveness of the isolation system against both earthquakes and
traffic-induced vibrations. Aiken et al.12 designed and tested LSF bearings to provide three dimensional isolation for a
liquid metal reactor building. Zhou et al.6 and Okamura et al.13 both considered the application of LSF bearings to 3D
isolation of modern nuclear facilities. Cilento et al.14 also carried out an extensive experimental campaign to demonstrate
the effectiveness of isolating a structure with LSF bearing, through the same tests that are considered in this paper. Yabana
andMatsuda15 carried out static, dynamic and failure tests on rubber bearingswith thick rubber layers (S= 4.2), to evaluate
their mechanical characteristics, showing that they are efficient as 3D base isolation devices. It has been highlighted the
influence of the decrease of rubber thickness on the vertical stiffness and the good performance of thick rubber layers
subjected to very high shear strains (500%).Warn andWu16 investigated analytically the concept of LSF as away to achieve
3D isolation showing that building isolated with LSF bearing could experience minor non-structural damage. Kelly and
Lee17 explored the dynamics of 3D isolation systems and reviewed the existing literature on 3D seismic isolations.
In the last decades, several studies have focused on the evaluation of the mechanical behaviour of rubber isolation

bearings, and on the development of simplified mechanical models for describing their response under combined hori-
zontal and vertical loading. Vemuru et al.18,19 studied both experimentally and numerically the coupled horizontal-vertical
behaviour of bearings under quasi-static loading and under dynamic loading. They observed that two behaviours differ
considerably from each other. Thus, models describing the variation of horizontal and vertical stiffness with horizontal
displacement based on quasi-static tests may not accurately simulate the dynamic response of bearings and structures
mounted on them. Few studies have considered specifically LSF bearings and the important effects of the reduction in
height and the increase in plan area due to bulging of the rubber layers under compression, which significantly affect the
horizontal behaviour. In principle, it could be possible to resort to advanced non-linear 3D finite-element modelling of
the bearings20,21 to capture these effects, as also done by the authors of this study.22 However, this approach is computa-
tionally too expensive and not feasible for the analysis of an entire isolated structure with LSF bearings. For this reason,
simplified device models are preferable for evaluating the seismic response of LSF base isolated buildings. In this regard,
most of the models available for simulating the horizontal response of laminated bearings under axial loads (mainly due
to the gravity loadings acting on the superstructure) (e.g., refs. 23–32) are based on the theory of Koh and Kelly.33,34 Thus,
they neglect the changes in the geometry of the rubber layers due to the axial loads. A theory based on linear elasticity
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and accounting for the nonlinear effect of axial loads on stiffness and on strains and stresses within the rubber was devel-
oped by Schapery.35–37 Bearing properties were derived for different geometries (spherical, flat and cylindrical), loads and
deformation modes. Prediction of stiffnesses were also made for LSF values and compared with finite element solutions.
Stanton et al.38 also explored the effect of large deflections on elastomeric bearings taking into account the reduction in
height and the increase in plane area due to bulging of the rubber layer under compressive load. More recently, a promis-
ing approach for describing the behaviour of LSF bearings was also proposed by Muhr39 for describing the behaviour of
rubber blocks with LSF. Further experimental and numerical studies are required to extend the theory and validate it for
the case of laminated bearings.
This paper aims to illustrate and evaluate amechanicalmodel for LSF bearings and to investigate the dynamic behaviour

and seismic response of structures mounted on them by accounting for the coupling between horizontal and vertical
response. The first part of the paper describes the results of the experimental campaign carried out at Tun Abdul Razak
Research Center (TARRC), consisting of double shear tests on rubber pieces and quasi-static tests on LSF rubber bearings
under compression and shear displacements. These results are used to evaluate the suitability of different theories for
describing the horizontal response of LSF bearings, including the one of Gent40 and of Stanton.38 The results are also
used to validate the theory proposed by Muhr39 for rubber blocks, extended here to the case of LSF bearings.
The second part of the paper focuses on the simulation of the shaking table tests carried out at University of Naples

Federico II on a structural prototype mounted on the LSF bearings tested at TARRC.14 The capabilities of the proposed
simplified modelling approach for simulating the behaviour of LSF bearings are investigated by carrying out numerical
analyses of the whole isolated system under different earthquake loadings. Further analyses are carried out to compare
the performance of the prototype mounted on bearings with different shape factors. The numerical results of the analyses
shed light on the possibility of using the simplified model for the preliminary seismic assessment of isolated structures
mounted on LSF bearings and on the effect of the bearing shape factor on the seismic performance of structures.

2 MATERIAL AND BEARING TESTS

The first part of this section describes the experimental tests carried out at TARRC to characterise the mechanical
behaviour of LSF bearings. These include material tests carried out on small double-shear cylindrical testpieces subjected
to sinusoidal shear loading and device tests carried out on LSF bearings subjected to cyclic shear loads under constant
compression. Subsequently, the analytical formulation developed by Muhr39 for LSF rubber blocks is illustrated, together
with its extension to the case of laminated bearings, and its capability to describe the bearing behaviour is evaluated based
on the comparison with experimental test results. A comparison is also made with the theories of Gent40 and Stanton
et al.,38 and with some numerical results.22

2.1 Experimental tests

Cylindrical in shape with diameter 25 mm, the double-shear testpieces consist of two rubber layers 6 mm thick that have
been hot-bonded tometal part. They weremade of a lightly filled natural rubber compound and were subjected at TARRC
to sinusoidal shear displacement histories with a frequency of 0.5 Hz. It should be noted that the samples were precon-
ditioned (i.e., non virgin). Nevertheless, the stress-softening effects30,42 are not significant since the compound is a low
damping and essentially unfilled natural rubber, and for the same reason the effect of the temperature rise in the rubber
upon repeated cycling is negligible. Defining the nominal shear strain γ as the ratio between the shear displacement and
the rubber height of a single layer, Figure 1(A) shows the results of the tests in terms of variation of the secant shear mod-
ulus G with the maximum average shear strain γmax. The shear modulus G at the maximum shear strain γmax is defined
as the ratio of the maximum shear stress τmax and γmax. The maximum shear stress is defined as the ratio of the maximum
shear force to the cross sectional area of the rubber sample. It can be observed thatG assumes values in the range between
0.62 and 0.47 MPa, reducing slightly for increasing values of γmax. Figure 1(B) also shows the variation of the equivalent
damping ratio43 with the strain amplitude. The damping ratio is generally very low, as expected for this type of rubber
compound, and increases slightly for increasing γmax values.
Figure 2(A) illustrates the tested laminated LSF bearings. These bearings were made from the lightly filled natural

rubber compound. They consist of three layers of 19 mm thick rubber, plan size 100 × 100 mm, two internal steel shims
(nominal thickness 2mm), designed to achieve a shape factor S= 1.32. The rubber layers were vulcanized and hot-bonded
to the steel plates using the Chemosil 211/220 system, as also used for the double shear testpiece of Figure 1. The two
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3768 ORFEO et al.

F IGURE 1 Secant shear modulus (A) and equivalent damping ratio (B) versus maximum shear strain.22

F IGURE 2 (A) Bearing geometry, dimensions shown in mm; initial and secant shear stiffness (B) and equivalent damping ratio (C) at
different levels of nominal shear strain, under a static displacement equivalent to a load of 19 kN.

internal steel-steel interfaces have been bonded using Loctite 638. Finally steel end plates 130 mm × 100 mmwere bonded
to the end steel faces using Araldite standard epoxy adhesive. TARRC manufactured four such bearings and performed
static compression and dynamic shear loading to a pair of bearing in a double shear configuration. They were subjected
to compression displacements using a hydraulic jack, whereas a Dartec uniaxial servohydraulic actuator was used to
apply the shear displacements. Two cycles of sinusoidal displacement were imposed at each of a series of increasing
shear strain amplitudes.41,44 It is worth noting that although the bearings were subjected to relatively high horizontal
displacement, there were no sign of failures in terms of rubber-to-metal bonding during both these tests and the shaking
table tests. Similarly, Yabana et al.15 observed no bonding failure in their investigation of LSF bearing. However, to reduce
the debonding risks, alternative solutions may be employed, for example, using fillets.45 The hysteresis loops obtained
from the sinusoidal tests are used to calculate the secant shear stiffness, defined as follows:

𝑘𝑠 = 𝐹max∕𝑑max (1)

where Fmax is the peak force and dmax is the peak displacement.
The horizontal tangent and secant stiffness of the bearing are evaluated considering the second displacement cycle

imposed with increasing levels of the nominal shear strain amplitude γ. Figure 2(B) illustrates the tangent and the secant
horizontal stiffness of the bearing under a compressive displacement corresponding to 19 kN. It can be observed that the
initial shear stiffness decreases for increasing shear strain amplitudes. On the other hand, the secant shear stiffness first
decreases and then increases. This behaviour contradicts the existing literature on elastomeric bearing, which shows a
decrease in horizontal stiffness with increasing horizontal displacement.46,47 This is because the vertical load in the bear-
ings decreases as the lateral displacement increases (see ref. 22). However, the reduction observed in such studiesmay also
be due to the Payne effect, which is the decrease of stiffness for increasing deformation, typical of HDNR compounds.5,30,42
The Payne effect is not significant in low-damping rubber compounds such as that used for the LSF bearings investigated in
this study (see Figure 1B) and thus the observed changes of horizontal stiffness aremainly a geometrical effect. Figure 2(C)
illustrates the equivalent damping ratio ξeq of the bearing at various nominal shear strain amplitudes (i.e., ratio between
the bearing horizontal deflection and the total rubber height). It is worth to note that the values of ξeq range from 2% to 3%,
and are substantially greater than the equivalent damping ratio of the rubber compound (around 1%). This phenomenon,
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ORFEO et al. 3769

F IGURE 3 Deformed bearing under a compression load of 19 kN (left) and a combined compression load and shear displacement (right)
during the experiment.44

observed experimentally by Thomas48 and numerically by Orfeo,22 was quantified by Koh and Kelly34 and Raithel and
Serino.49 They showed, using a viscoelastic analytical model, that the compression load increases the phase difference
between the horizontal force and the horizontal displacement, thus increasing the energy dissipation per cycle.
In the tests, a vertical downward displacement was first imposed at the top plate, until a compressive load of 19 kN was

achieved, equal to themean load per bearing under the gravity loads in the shaking table tests. Subsequently, two cycles of
sinusoidal displacements were applied while preventing vertical motion and rotation of the top plate. Figure 3 illustrates
the deformed bearing during the test under the applied compressive load of 19 kN and the applied load in combination
with the maximum applied horizontal displacement.
It is noteworthy that the level of the applied compressive load is 60% higher than the value of the critical bearing load

according to the theory of Gent and of Koh and Kelly,34,40 as also discussed in the subsequent section more in detail.
However, no signs of instability were observed in the experiment.

2.2 Review of analytical models of LSF bearings

The behaviour of LSF isolation bearings under shear loading is strongly influenced by the applied compression loads. In
particular, compressive loads induce a significant reduction of the horizontal stiffness due to nonlinear geometrical effects
(P-delta effects), partly mitigated by the increase of the rubber layer area (due to bulging) and reduction of height. The
pressure also increases the damping capabilities under horizontal loading.34,48,51 An analyticalmodel capable of accurately
describing all these effects in bearings for all possible values of shape factors has not been developed, yet. In the following,
a brief overview of the theories developed over the years to include axial load effects is provided.
According to the classical theory of rubber blocks, developed under the assumptions of small strains, linear elastic

behaviour and incompressibility of the rubber, the vertical load N can be related linearly to the compressive strain εv (i.e.,
the ratio between the compressive displacement vv and the undeformed height h0) through the following expression:

𝑁 = 𝐴0𝐸𝑐𝜀𝑣 = 3𝐺𝐴0 (𝑓𝑐1 + 𝑓𝑐2) 𝜀𝑣 (2)

whereA0 is the initial cross-sectional area of the rubber block, G is the shear modulus and fc1 and fc2 are numerical factors
accounting for the confining effect of the steel plates. Their expressions depend on the rubber section shape and can be
found in the original paper of Gent and Meinecke.56
The transverse stiffness kh of an axially loaded shear-flexible beam-column that is fixed against rotation at both ends

is.40,53

𝑘ℎ =
𝛼𝛽𝑁

2 tan
(
𝛼ℎ

2

)
− 𝛼𝛽ℎ

(3)

where h is the bearing height between the end plates. The terms α and β are defined as follows:

𝛼2 =
𝑁(𝑅+𝑁)

𝐵𝑅

𝛽 =
𝑅

𝑅+𝑁

(4)
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3770 ORFEO et al.

where B and R are the bending and shear stiffnesses for unit length of the rubber column, which are given in differ-
ent expressions by Gent and Meinecke,56 and N is the applied vertical load, maintained constant under the horizontal
deflection.
The bending and the shear stiffness parameters according to Gent and Meinecke56 are defined as follows:

𝐵 = 𝑓𝑟𝐸𝐼0

𝑅 = 𝐺𝐴0
(5)

where fr is a factor that similarly to fc1 and fc2 accounts for the confinement by the end plates.
The expressions above can be extended to the case of laminated bearings by assuming that the steel layers are rigid,

thus increasing the values of B and R according to a factor equal to h/tR, where tR is the total rubber layer height.34,57–59
It is noteworthy that based on the work of Haringx53 and of Gent,40 Koh and Kelly33,34 developed a mechanical model

to describe the shear response of elastomeric isolation bearings including the effect of axial loads, and validated it against
some experimental results on bearings with values of S in the range 5−10. The dependency of horizontal stiffness on
vertical stresses was studied also including large displacements and non-linearity of rubber by other authors.47,52 These
theories assume that the rubber layer shape is fixed and independent of the applied vertical load, which is an accurate
assumption only for high shape factors. Thus, they do not account for the reduction of height and bulging (i.e., increase
of plan area) of the rubber layers due to compression, which is very significant and cannot be neglected in the case of
LSFs.
Stanton et al.38 derived relations for the compressive, shear and bending stiffnesses of LSF bearings by including the

axial shortening and increase in plan area, with the layers’ bulging expressed as a function of the Poisson ratio. In the
following, reference is made to the “Poisson model”, which consists of a homogeneous shear flexible column, made of a
linear elastic material and undergoing small deformations. The compressive, shear and bending stiffnesses change with
the compressive strain. They are approximated by assuming that the plan dimension of each elastomeric layer increases
by a factor (1 + n*ev), where n* = 0.3 (rather than 0.5) is a nominal Poisson ratio chosen empirically to account for the
non-uniform increase of area along the height due to the effect of the end plates.
The expression of the relationship between the axial forceN and the nominal axial deformation εv according to Stanton

et al.’s theory38 is:

𝑁 = 3𝐺𝐴0 (𝑓𝑐1 + 𝑓𝑐2)
(1 + 𝜈 ∗ 𝜀𝑣)

3
− 1

3𝜈 ∗ 𝜀𝑣
𝜀𝑣 (6)

Stanton et al.38 provided the following expression of the bending and shear stiffness parameters:

𝐵 = 𝑓𝑟𝐸𝐼0(1 + 𝜈 ∗ 𝜀𝑣)
4

𝑅 = 𝐺𝐴0(1 + 𝜈 ∗ 𝜀𝑣)
2

(7)

These expression of B and R can be used within Equation (3) and assuming h = h0 to evaluate the horizontal stiffness
of the compressed bearing.
Muhr39 adopted the work of Goodchild et al.51 on the lateral stiffness and damping of stretched rubber beams and

developed a theory for the compressive and lateral stiffness of single layer blocks of rubber with bonded endplates under
finite axial deformation, accounting for the changes in geometry of the block as functions of the axial shortening and shape
factor. The theory of Muhr was developed considering a Mooney–Rivlin strain energy model for the rubber compound,
and a simplified deformation field consisting of small shear strains superimposed to finite axial strain.
The expression developed by Muhr39 for relating the axial compression to the applied compressive load N considering

a block made of a Neo-Hookean rubber material is:

𝑁 (𝜆) = 𝐺𝐴0

[(
𝜆 −

1

𝜆2

)
+ 3𝑆2

(
1 −

1

𝜆2

)]
(8)

where l = 1-e is the axial stretch ratio (<1 in the case of compression).
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F IGURE 4 Comparison between the theories. (A) Compressive load versus vertical displacement (B) Initial shear stiffness versus
vertical displacement for the bearing of Figure 2(A). Experimental values taken from ref. 44.

TABLE 1 Buckling load according to various theories and FE analysis.22

Experimental Muhr FE22 Gent Stanton
34 kN 30 kN 39 kN 14 kN 26 kN

The expressions of B and R according to Muhr are:

𝐵 = 𝐺

(
2𝜆2 +

1

𝜆

)(
1 +
2𝑆2

3

)
𝐼0
𝜆2

(9)

𝑅 = 𝜆𝐺𝐴0 (10)

The expressions of B and R according to Muhr’s theory can also be used within Equation (3) to evaluate the horizontal
bearing stiffness, by using the deformed length h instead of h0.
Figure 4(A) shows and compares the relationship between applied vertical load and vertical displacement according to

the Equations (2), (6) and (8). In the same figure, the curve obtained numerically by Orfeo et al.22 is shown for comparison
(the axial load was not monitored during the experiments). It can be observed that Muhr’s theory better captures the
nonlinear trend of increase of stiffness with the compressive displacement.
Figure 4(B) compares the estimates of the initial shear stiffness at zero shear displacement for increasing values of the

applied vertical displacement according to Muhr’s theory, Stanton’s theory, Gent,40 and the experimental results. Since
the theories provide estimates of the tangent shear stiffness at zero horizontal displacement, the shear modulus of the
rubber material at 0% shear strain is considered, corresponding to G = 0.63 MPa (Figure 2B). In general, the horizontal
stiffness reduces for increasing vertical load, and the condition of instability is attained when it becomes zero. Muhr’s
model provide an overall good estimate of the shear stiffness for increasing compression levels. It is also interesting to
observe that the ratio between the initial horizontal and vertical stiffness is about 43, which is significantly lower than the
values typical of high shape factor bearings (several hundred times,2 e.g., about 800 for S = 12 in ref. 60, which deals with
isolation bearings for bridges).
While the maximum compressive load considered experimentally is 29 kN, analytical formulations are also

used for higher compression levels to estimate the buckling load. Table 1 illustrates the estimates of the buck-
ling load according to Muhr, Stanton and Gent models. It can be observed that all the theories underestimate
the buckling load of the bearing which is likely to achieve the buckling condition for a compressive load equal
to 34 kN (obtained by extrapolation of the experimental results). However, Muhr’s model provides a better esti-
mate of the buckling load with an error of only 12%. Table 1 also illustrates the buckling load according to the
numerical results provided by Orfeo et al.,22 which is equal to 39 kN. It is worth observing, from the same
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table, that the critical load according to the theory of Gent40 is only 40% of the value extrapolated from the
experiment.
In general, the bearings are expected to experience some rotation at the top and therefore a formulation is

needed to describe their behaviour under rotation, as well as the coupled rotational-translation behaviour. For
this purpose, similarly to Crowder et al.,61 it is possible to refer to the work of Chang.62 Denoting with vb,top
and qb,top, respectively, the translation and rotation at the top of the bearing, the following relationship can
be used to relate these quantities to the shear force and bending moment applied at the top of the bearing
(Vtop andMtop):

[
𝑉𝑡𝑜𝑝

𝑀𝑡𝑜𝑝

]
=

[
𝑘𝑥 𝑘𝑥,𝜃

𝑘𝜃,𝑥 𝑘𝜃

][
𝑣𝑏,𝑡𝑜𝑝

𝜃𝑏,𝑡𝑜𝑝

]
=

𝑁

2 tan
(
𝛼ℎ

2

)
− 𝛼𝛽ℎ

⎡⎢⎢⎣
𝛼𝛽 − tan

(
𝛼ℎ

2

)
− tan

(
𝛼ℎ

2

)
1

𝛼𝛽
−

ℎ

sin(𝛼𝛽)

⎤⎥⎥⎦
[
𝑣𝑏,𝑡𝑜𝑝

𝜃𝑏,𝑡𝑜𝑝

]
(11)

where kx is the horizontal stiffness (coincident with kh of Equation (3) for zero horizontal deflections), kq is the rotational
stiffness and kx,q a coupling term.
Under strong earthquake inputs, elastomeric bearings undergo large lateral displacements, and the rubber is subjected

to high shear strains. In order to capture these effects, reference can bemade to Nagarajaiah et al.’s47 extension of Koh and
Kelly’s mechanical model, which considers large displacements, large rotations, and nonlinearity of rubber. The change
of the horizontal stiffness kx with the horizontal displacement vtop is evaluated solving numerically the following system
of equations:

⎧⎪⎪⎨⎪⎪⎩

𝑅

ℎ

(
1 − 𝐶𝑠

(
𝑠

𝑡𝑟

))
𝑠 = 𝐹 cos 𝜑 + 𝑁 sin 𝜑 +

𝜋2𝐵

ℎ

𝐶𝜃𝜑
2

2

𝜋2𝐵

ℎ

(
1 − 𝐶𝜑

(
𝑠

𝑡𝑟

))
𝜑 = 𝑁 (ℎ sin 𝜑 + 𝑠 cos 𝜑) + 𝐹 (ℎ cos 𝜑 − 𝑠 sin 𝜑)

𝑣𝑡𝑜𝑝 = ℎ sin 𝜑 + 𝑠 cos 𝜑

(12)

where F and N are the horizontal and vertical force, the expressions of R,B, and h are evaluated according to
the considered theory, Cs and Cj are material parameters that describe their evolution for increasing nominal
shear strain levels, and j and s are the rotation and the shear displacement in the Koh and Kelly’s mechan-
ical model, respectively. The system of equations is solved by finding the values of s, j and F for increasing
values of vtop, and the horizontal secant stiffness kx, corresponds to the ratio between F and vtop. For small
value of s and j, Cs = 0 and Cj = 0, the system of equations reduces to the expression derived by Koh and
Kelly.33
For describing the reduction of the vertical stiffness with the increase of the horizontal displacement, Warn et al.’s

model has been adopted.63 This model accounts for the drop in height of the bearing due to the horizontal displacement,
whereas the change of the stiffness with the increase of the axial load is assumed negligible. The following expression
taken fromWarn et al.63 can be used:

𝑘𝑧 = 𝑘𝑧0
1[

1 +
3𝐴0

𝐼

𝑣2𝑡𝑜𝑝

𝜋2

] (13)

where kz0 = ∂N/∂vv is the vertical stiffness evaluated in correspondence of the bearing’s deformed configuration under
the applied compressive force N, and I is the second moment of area of the bearing cross section.
To summarise, the analytical model of the LSF bearings used in the next section for the simulation of the dynamic

response of the prototype uses the expression of the horizontal secant stiffness kx resulting from the solution of Equation
(12), the expressions of the rotational stiffness kf and of the coupling between horizontal displacements and rotations kx,f
reported in Equation (11), the expression of the vertical stiffness kz from Equation (13), with kz0 derived by differentiation
of Equation (8).
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ORFEO et al. 3773

F IGURE 5 (A) Cabinet projection of the prototype building and the instrumentation set-up; (B) view of the test frame of the shaking
table at the DiST laboratory University of Naples Federico II.66

TABLE 2 Identified dynamic properties of the isolated system.

Mode 1 Mode 2 Mode 3
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Vibration period [s] 1.21 1.24 0.27 0.26 0.08 0.08
Damping ratio [–] 0.08 0.06 0.08 0.04 0.06 0.06

3 SHAKING TABLE TESTS

3.1 Prototype, tests description and dynamic identification

This subsection briefly describes the shaking table tests carried out in University of Naples Federico II on a build-
ing prototype mounted on the LSF bearings manufactured at TARRC.41 Figure 5 illustrates the superstructure, which
consists in a one storey steel frame, with plan dimensions of 2.65 × 2.15 m and total height 2.9 m. The columns
have a box section 0.15 × 0.15 × 0.15 m, and they are connected to the base floor by means of a steel plate
(0.61 × 0.45 m). The beams supporting the top slab are hot-formed square hollow sections 120 × 120 × 12.5 mm
pinned to the columns. The four external beams at the base of the frame have HEM 160 profile. The mass of
the base floor is equivalent to 3.6 tons, whereas the mass of the floor at the top is equal to 4.1 tons. The fixed-
base structure has a fundamental period of vibration of Ts = 0.24 s. It is noteworthy that the same superstructure
has been recently used to test alternative isolation systems such as recycled rubber and fibre-reinforced unbonded
isolators.64,65
Table 2 summarizes the experimental frequencies, periods, and damping ratios of the system. These have been obtained

by applying the Stochastic Subspace Identification (SSI) method,67 using the recorded acceleration responses at the base
and top level under two random input tests (i.e., Test 1, Test 2), with ground motions applied in the direction of the
widest frame span. The tests induced a peak horizontal displacement of the bearings of 7.44 and 16.33 mm, respectively,
corresponding to average shear strain of 13% and 29%.
The identified value of the fundamental vibration period is 1.21s, corresponding to an equivalent period of the full-

scale structure of 2.1s (the prototype has a geometry scale factor of 1/3 and thus the period of the full scale structure
is √3 times the period of the prototype). It is noteworthy that taking the superstructure as rigid and the bearings as
infinitely stiff in the vertical direction, and using the initial bearing stiffness kis = 53 kN/m evaluated in Subsection 2.3
under the axial load of 19 kN, an isolation period 2𝜋

√
𝑀𝑡𝑜𝑡∕4𝑘𝑖𝑠= 1.21s is obtained, which coincides with the experimental

one.
After performing the random vibration tests, further tests were carried out under seven earthquake ground motions

selected from the European strong-motion database, whose main characteristics are described in Table 3. The next
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3774 ORFEO et al.

TABLE 3 Ground motion characteristics.

Waveform ID Earthquake Name Earthquake Country Mw PGA (m/s2) PGV (cm/s) PGD (cm)
7142 Bingol Turkey 6.3 2.55 18.29 3.25
55 Friuli Italy 6.5 2.55 15.25 9.29
200 Montenegro Montenegro 6.9 2.55 12.87 9.60
428 Etolia Greece 5.3 2.55 12.46 6.06
372 Lazio Abruzzo Italy 5.9 2.55 15.02 6.80
290 Campano Lucano Italy 6.9 2.55 44.10 16.20
287 Campano Lucano Italy 6.9 2.55 43.90 14.00

Abbreviations: Mw, magnitude; PGA, peak ground acceleration; PGD, peak ground displacement; PGV, peak ground velocity.

F IGURE 6 Model of the base isolated structure.

subsection describes the development and validation of a numerical model for simulating the dynamic and seismic
response of the isolated structure with LSF bearings.

3.2 Simplified model

Since the shaking table test configuration has a plane of symmetry, only half of the building ismodelled. Figure 6 illustrates
the model representing the isolated frame building and the generalised coordinates that are considered for deriving the
equations of motion of the system through the Lagrange’s equations. The superstructure is simplified as a single degree
of freedom system with mass mtop and stiffness ks, with the mass located at a distance H from the supporting rigid base
of mass mb. The base, of width 2D, is supported by two springs with horizontal, vertical and rotational stiffness denoted
as kx, kz, kx,θ, respectively. These are assumed constant during the seismic motion. The generalised coordinates are: the
rotation θ of the base (coincident with the rotation of the bearing top θ b,top), the vertical displacement of the base vb,z
(coincident with the vertical displacement of the bearings), the horizontal displacement of the base vb,x (coincident with
the bearings’ top displacement vb,top), and the horizontal displacement of the superstructure relative to isolation system
vs,x.
The kinetic energy and the potential energy of the system are defined as follows:

𝑇 =
1

2
𝑚𝑏

(
𝑣̇𝑏,𝑥 + 𝑣̇𝑔,𝑥

)2
+
1

2
𝑚𝑡𝑜𝑝

(
𝑣̇𝑏,𝑥 + 𝑣̇𝑔,𝑥 + 𝐻𝜃̇ + 𝑣̇𝑠,𝑥

)2
+
1

2
𝑚𝑡𝑜𝑡

(
𝑣̇𝑏,𝑧

)2
+
1

2
𝐼𝑏𝜃̇

2 +
1

2
𝐼𝑡𝑜𝑝𝜃̇

2

𝑉 = 2

(
1

2
𝑘𝑥

(
𝑣𝑏,𝑥

)2
+
1

2
𝑘𝑧
(
𝑣𝑏,𝑧

)2
+
1

2
𝑘𝑧(𝜃𝐷)

2
+
1

2
𝑘𝜃0𝜃

2 +
1

2
𝑘𝑠𝑣𝑠,𝑥

2 + 𝑘𝜃,𝑥𝑣𝑏,𝑥𝜃 +
1

2
𝑘𝜃,𝑥𝑣𝑏,𝑥

2

)
(14)
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ORFEO et al. 3775

where vg,x denotes the response induced by the earthquake ground motion Ib and Itop are the moment of inertia of mass
mb andmtop, respectively.
The terms kθ,x, denotes the coupling between the horizontal displacement and the rotation.
The Lagrangian is therefore:

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚𝑏

(
𝑣̇𝑏,𝑥 + 𝑣̇𝑔,𝑥

)2
+
1

2
𝑚𝑡𝑜𝑝

(
𝑣̇𝑏,𝑥 + 𝑣̇𝑔,𝑥 + 𝐻𝜃̇ + 𝑣̇𝑠,𝑥

)2
+
1

2
𝑚𝑡𝑜𝑡

(
𝑣̇𝑏,𝑧

)2
+

+
1

2
𝐼𝑏𝜃̇

2 +
1

2
𝐼𝑡𝑜𝑝𝜃̇

2 − 𝑘𝑥𝑣𝑏,𝑥
2 − 𝑘𝑧𝑣𝑏,𝑧

2 − 𝑘𝑧(𝜃𝐷)
2
− 𝑘𝜃0𝜃

2 − 𝑘𝑠𝑣
2
𝑠,𝑥 − 2𝑘𝜃,𝑥𝑣𝑏,𝑥𝜃 − 𝑘𝜃,𝑥𝑣𝑏,𝑥

2 (15)

The corresponding Euler-Lagrange equations of motion are obtained by the following derivatives of the Lagrangian:

𝜕

𝜕𝑡

(
𝜕𝐿

𝜕𝑣̇𝑏,𝑥

)
−

𝜕𝐿

𝜕𝑣𝑏,𝑥
= 0

𝜕

𝜕𝑡

(
𝜕𝐿

𝜕𝜃̇

)
−
𝜕𝐿

𝜕𝜃
= 0

𝜕

𝜕𝑡

(
𝜕𝐿

𝜕𝑣̇𝑠,𝑥

)
−

𝜕𝐿

𝜕𝑣𝑠,𝑥
= 0

𝜕

𝜕𝑡

(
𝜕𝐿

𝜕𝑣̇𝑏,𝑧

)
−

𝜕𝐿

𝜕𝑣𝑏,𝑧
= 0

(16)

which gives:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑚𝑏
(
𝑣𝑏,𝑥 + 𝑣𝑔,𝑥

)
+𝑚𝑡𝑜𝑝

(
𝑣𝑏,𝑥 + 𝑣𝑔,𝑥 + 𝐻𝜃̈ + 𝑣𝑠,𝑥

)
+ 2𝑘𝑥𝑣𝑏,𝑥 + 2𝑘𝜃,𝑥𝑣𝑏,𝑥 + 2𝑘𝜃,𝑥𝜃 = 0

𝑚𝑡𝑜𝑝𝐻
(
𝑣𝑏,𝑥 + 𝑣𝑔,𝑥 + 𝐻𝜃̈ + 𝑣𝑠,𝑥

)
+ 𝐼𝑏𝜃̈ + 𝐼𝑡𝑜𝑝𝜃̈ + 2𝑘𝑧𝐷

2𝜃 + 2𝑘𝜃0𝜃 + 2𝑘𝜃,𝑥𝑣𝑏,𝑥 = 0

𝑚𝑡𝑜𝑝

(
𝑣𝑏,𝑥 + 𝑣𝑔,𝑥 + 𝐻𝜃̈ + 𝑣𝑠,𝑥

)
+ 2𝑘𝑠

(
𝑣𝑠,𝑥

)
= 0

𝑚𝑡𝑜𝑡𝑣𝑏,𝑧 + 2𝑘𝑧
(
𝑣𝑏,𝑧

)
= 0

(17)

The response of the structure to earthquake-induced ground motion 𝑣𝑔(𝑡), when also damping is included, can be
described by the differential equation in matrix form:

𝐌𝐯̈ + 𝐂𝐯̇ + 𝐊𝐯 = −𝐌𝐈𝑣𝑔 (18)

where I is the influence vector and the matrices are defined as follows:

𝐈 =

⎡⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎦
(19)

𝛎 =

⎡⎢⎢⎢⎢⎣
𝑣𝑏,𝑥
𝜃

𝑣𝑠,𝑥
𝑣𝑏,𝑧

⎤⎥⎥⎥⎥⎦
(20)

𝐌 =

⎡⎢⎢⎢⎢⎣
𝑚𝑏 +𝑚𝑡𝑜𝑝 𝑚𝑡𝑜𝑝𝐻 𝑚𝑡𝑜𝑝 0

𝑚𝑡𝑜𝑝𝐻 𝑚𝑡𝑜𝑝𝐻
2 + 𝐼𝑏 + 𝐼𝑡𝑜𝑝 𝑚𝑡𝑜𝑝𝐻 0

𝑚𝑡𝑜𝑝 𝑚𝑡𝑜𝑝𝐻 𝑚𝑡𝑜𝑝 0

0 0 0 𝑚𝑏 + 𝑚𝑡𝑜𝑝

⎤⎥⎥⎥⎥⎦
(21)

𝐊 =

⎡⎢⎢⎢⎢⎣
2𝑘𝑥 2𝑘𝜃,𝑥 0 0

2𝑘𝜃,𝑥 2𝑘𝑧𝐷
2 + 2𝑘𝜃0 0 0

0 0 2𝑘𝑠 0

0 0 0 2𝑘𝑧

⎤⎥⎥⎥⎥⎦
(22)
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3776 ORFEO et al.

TABLE 4 Base isolated system parameters.

Ib Itop mb mtop kx0 kz0 kθ0 kxθ cb
[m4] [m4] [ton] [ton] [kN/m] [kN/m] [kNm] [kNm] [Ns/m]
1.22 1.98 1.26 2.05 1939 53 0.0032 0.5 2.88

F IGURE 7 Variation with the horizontal displacement of the secant horizontal stiffness (A) and of the vertical stiffness (B).

The damping matrix C can be constructed in a simplified way by assuming a value for the damping ratio of the base
isolation system and of superstructure ξb and ξs as follows:

𝐂 (1, 1) = 𝑐𝑏 = 2𝜉𝑏
𝐊(1, 1)

𝜔𝑖𝑠
(23)

𝐂 (3, 3) = 𝑐𝑠 = 2𝜉𝑠
𝐊(3, 3)

𝜔𝑖𝑠
(23)

The adopted value of ξb refers to the equivalent damping ratio of the bearing corresponding to a nominal shear strain
of 80% (Figure 2C). This is the ratio between the maximum horizontal displacement experienced by the bearing due to
the Bingol earthquake and the total rubber layers’ height. The damping ratio of the superstructure ξs is assumed equal
to 0.65%.68 The natural frequency ωis is known from the eigenvalue analysis. Table 4 shows the values of the masses and
moments of inertia considered in this study along with the values of the initial stiffness and damping of the bearing.
The vertical and horizontal stiffness are determined by considering Muhr’s theory39 for the bearing compressed by a
vertical load of 19 kN. In particular, kx0 is obtained from Equation (3), and kz0 by differentiation of the expression of N in
Equation (8). The expression of the rotational stiffness kθ0 and of the coupling term kxθ can be found in Equation (11) and
are assumed constant.
The horizontal stiffness variation with horizontal displacement is defined by solving Equation (12) as discussed in the

previous section, with B and R from the theory of Muhr39 and Cs and Cj calibrated against the experimental double-shear
test results and assumed equal to 0.14. The vertical stiffness reduction is evaluated using Equation (13). The coupling term
is assumed not to change with the horizontal displacement.
Figure 7 shows the variation of the horizontal and vertical stiffnesses with the horizontal displacement up to 45 mm

(i.e., the maximum deflection experienced by the bearing during Bingol earthquake) according to Equations (12) and (13)
for an axial load of 19 kN.
The undamped modal properties of the system can be found by solving the eigenvalue problem

det[𝐊 − 𝜔𝑛
2𝐌] = 0 (24)

Figure 8 illustrates the modal shapes of the horizontal vibration modes of the model, by showing the values of the dis-
placements vb,x, vs,x and θH, normalised by the maximum horizontal displacement for each mode. It can be observed
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ORFEO et al. 3777

F IGURE 8 Modal shapes of the first three modes of vibration.

TABLE 5 Periods of vibration, mode shapes and MAC values.

Mode First Second Third
Natural periods [s] 1.25 0.28 0.08
MAC 0.99 0.96 0.86

F IGURE 9 Mode shapes of the base isolated structure. (A) First mode, (B) Second mode, (C) Third mode.

that there is a small amount of rocking in the first mode, whereas there is a higher contribution in the second and third
mode. Table 5 shows the natural periods evaluated at each mode showing a good agreement with those estimated via the
dynamic identification (Table 2). Furthermore, the Modal Assurance Criterion (MAC)68 has been used to compare the
mode shapes derived from the analytical model with those obtained experimentally. The obtained MAC values, shown in
Table 5, indicate that mode shapes 1 and 2 are almost identical with the experiment ones (MAC higher than 0.9) whereas
a slight difference (MAC between 0.8 and 0.9) can be found for mode 3. Figure 9 presents the deflection shapes corre-
sponding to the first three horizontal modes. The first mode is primarily dominated by the horizontal deflections of the
bearing, with the superstructure moving almost rigidly. The second mode involves significant deflections of the bearings,
as well as base rotation and superstructure deflections. The third modal shape is controlled mainly by the rotation of the
base and by the deflection of the columns.
In order to analyse the response of the isolated system to the seismic inputs, a numericalmethod based on a fourth-order

Runge-Kutta algorithm was employed. In particular, the second-order differential equation of motion corresponding to

 10969845, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.3947, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3778 ORFEO et al.

F IGURE 10 Response to Friuli earthquake. (A) Relative displacement isolator time history, (B) Interstorey drift, (C) Acceleration at the
top node, (D) Time history of the bearing, superstructure and rocking contributions to the top node displacement.

Equation (18) was rewritten as a first-order one, and solved using the “ode45” function in Matlab.70 To simplify the model
and avoid the simultaneous solution of algebraic and differential equations, the value of the secant stiffness in the vertical
and transverse direction corresponding to the maximum displacement and the value of the axial force due to permanent
load was used. The secant stiffness was determined by solving externally the algebraic equations iteratively (11) to (13).
Once the secant stiffness values (i.e., both horizontal and vertical) were determined, the ODEs were iteratively solved
with constant stiffness values throughout the seismic analysis, starting from the initial ones. The stiffness values were
updated based on the bearing displacements until convergence was achieved on the bearing maximum displacement.
Although the concept of secant stiffness is widely employed for seismic analyses, it should be noted that it may have some
impact on the accuracy of the results. However, considering at each time step the actual bearing resisting forces in the
horizontal and vertical direction, that are a function of the current bearing displacement, does not yield improved results.
This may be due to other simplifying assumptions inherent to the model, for example, that the vertical bearing stiffness
is independent of the variation of axial loading. Further refinements are required to improve the accuracy of the bearing
model, which are, however, out of the scope of this study. Figure 10(A)–(C) compare the experimental and numerical
response under Friuli record, in terms of horizontal bearing displacement (Figure 10A), superstructure interstorey drift
(Figure 10B) and acceleration at the top of the superstructure (Figure 10). In general, a good agreement is observed between
the experimental and the numerical response. Figure 10(C) illustrates the contribution to the displacement response of
the top node by the horizontal deflections of the bearings, the superstructure deflection, and the rocking contribution. The
rocking contribution is the rotation experienced by the base isolation system under seismic load multiplied by the height
of the superstructure H. It can be observed that the displacements are all in phase, suggesting mode 1 predominates the
response, and the superstructure response is dominated by the bearing deflection. The rocking of the bearings contributes
to less than 16% of the peak top displacement of the structure, despite the relatively high vertical flexibility of the LSF
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ORFEO et al. 3779

F IGURE 11 Response to Bingol earthquake. (A) Relative displacement isolator time history, (B) Interstorey drift, (C) Acceleration at top
node and (D) Time history of the bearing, superstructure and rocking contributions to the top node displacement.

bearings, compared to bearings with high shape factors. This outcome is in line with previous findings demonstrating
that a vertical frequency higher than 1–3 Hz provides negligible rocking motion and results into a fundamental horizontal
deflection mode of the structure.20,71 Recently Losanno et al. found that even in the case of fibre-reinforced elastomeric
isolators a limited axial-to-horizontal stiffness ratio would not affect the effectiveness of base isolation under seismic
motion.72
Figure 11(A–C) shows the results obtained for the Bingol earthquake, which induces higher deflections of the bearings

compared to the other records. The agreement between the experimental and analytical results for both the relative dis-
placement of the isolator and the interstorey drift satisfactory up to approximately 8 s, at which point the amplitude of
the input ground motion decreases and the differences between the test and model becomemore significant. This may be
due to a limitation in the modelling approach, specifically the assumption of using a single secant value for the reduced
horizontal and vertical stiffnesses. In reality, the horizontal and vertical stiffness of the bearings exhibit a more complex,
nonlinear variation during the loading history, especially when instability is approached. Developing an analytical model
for simulating this is out of the scope of the present study. It is noteworthy that to properly simulate the response to Bingol
earthquake input and the period elongation that characterises the response under the large amplitudes of vibrations, it is
necessary to consider the horizontal and vertical stiffness reduction for increasing horizontal displacements, as shown in
Figure 7(A, B).
It is worth mentioning that significant differences can be observed in the drift responses. Orfeo et al.22 discussed this

discrepancy, attributing it to the flexibility in the connection between the superstructure and the base, whichwas assumed
to be rigid in the numerical model. Notably, the results obtained from the simplified model are more consistent with those
presented inOrfeo et al.22 The numericalmodel exhibits amaximumdrift that is only 6% greater than that of the simplified
model. The acceleration at the top of the superstructure is another parameter that is affected by the superstructure mod-
elling assumptions (including the damping). Nevertheless, the simplified numerical model provides results quite close to

 10969845, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.3947, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3780 ORFEO et al.

F IGURE 1 2 Relative displacement isolator time history: comparison between experiment, simplified model using the initial horizontal
and vertical stiffness and the simplified model using secant horizontal and vertical stiffness under (A) Friuli earthquake input and (B) Bingol
earthquake input.

TABLE 6 Maximum absolute values of various response parameters according to experimental test and numerical model.

Max displacement isolator [m] Max drift structure [%] Max top acceleration [m/s2]

Earthquake name Exp
Numerical
model

Relative
error % Exp

Numerical
model

Relative
error % Exp

Numerical
model

Relative
error %

Bingol 0.0459 0.0466 1.6 0.3 0.23 −24.5 1.2 0.86 −28
Friuli 0.0172 0.0158 −9.4 0.17 0.13 −24.1 0.9 0.71 −20
Montenegro 0.0173 0.0188 8.8 0.17 0.14 −19.7 0.9 0.77 −11.4
Etolia 0.0174 0.019 9.0 0.17 0.14 −17.4 0.9 0.77 −11.0
Lazio/Abruzzo 0.0176 0.019 8.3 0.16 0.14 −13.2 0.9 0.78 −10.3
ID 290 0.0176 0.019 8.1 0.16 0.14 −15.8 0.9 0.78 −9.9
ID 287 0.0173 0.0189 9.2 0.17 0.14 −19.2 0.9 0.78 −10.0

those obtained with the advanced numerical model. The acceleration obtained from the numerical model is 16% greater
than that of the simplified model.
Figure 11(D) illustrates the three contributions to the top displacement response, showing again that these contributions

are all in phase and that the rocking of base has a negligible effect on the response.
It is worth noting that incorporating the variation of vertical and horizontal stiffness with horizontal displacement

according to Equations (12) and (13), leads to significantly improved results compared to those obtained by neglecting the
stiffness variation. Figure 12(A, B) shows the time history response of the bearings in terms of relative horizontal displace-
ment under Friuli and Bingol earthquakes, according to the numerical models with initial and secant stiffness values,
and the experimental results. The model with reduced secant bearing stiffness is significantly more accurate, particularly
under conditions of large displacement demand as in the case of Bingol earthquake.
Table 6 compares the experimental and numerical maximum absolute values of the isolator deflection, interstorey drift

and acceleration at top for all the records. It is noteworthy that these results have been obtained considering the initial
values of the horizontal and vertical bearing stiffness (Table 4) for all the analyseswith the exception of the one considering
Bingol record. For this record, the secant values of the horizontal and vertical stiffness have been considered. These are
equal to 33 and 1180 kN/m, corresponding to a reduction of, respectively, 38% and 39% with respect to the initial values.
It can be observed that the numerical model describes accurately the response of the isolator with only 10% of relative

errorwith respect to the experimental results (minimumerror of 1.6%under Bingol record corresponding to largest isolator
displacement), whereas a higher relative error (24%) can be observed for the prediction of maximum interstorey drift of
the superstructure. In terms of top acceleration, the numerical model describes the Bingol response with 28% of relative
error, which is due to the assumption of a secant horizontal stiffness (i.e., equivalent linear model) of the superstructure,
whereas lower relative errors can be observed under the other records.
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TABLE 7 Horizontal and vertical stiffness of the bearings.

Shape factor S
Initial horizontal Stiffness
kx0 [kN/m]

Initial vertical Stiffness
kz0 [kN/m] kz0/kx0

Horizontal
Period [s]

Vertical
Period [s]

0.90 53 1310 25 1.25 0.24
1.32 53 1913 37 1.25 0.20
9.24 53 31745 608 1.24 0.05
19 53 127120 2434 1.24 0.02

F IGURE 13 Effect of the vertical load on (A) horizontal stiffness and (B) vertical stiffness, for different shape factors.

F IGURE 14 Mode shapes of the first three modes of vibration for the three designed bearing: (A) S = 0.93, (B) S = 9.56 and (C) S = 10.

4 PARAMETRIC STUDY

This section investigates the seismic response of a set of models that are obtained from the model investigated in the
previous section by varying the shape factor of the bearings. Table 7 describes the geometric and mechanical properties of
the bearings, which have been designed in order to obtain the same horizontal stiffness exhibited under the permanent
load of 19 kN. The initial horizontal and vertical stiffness have been estimated using Muhr’s theory.
It can be noted that the vertical period reduces significantly with the increase of the shape factor, whereas the first

isolation period is not affected, since it is mainly controlled by the horizontal stiffness of the bearings. Figure 13 illustrates
the variation of the initial horizontal and vertical stiffness of the different bearings for increasing values of the vertical
load.
Figure 14 describes the contributions of the various Lagrangian parameters to the shapes of the first three modes, for

the various values of S considered. The system with S= 0.9 exhibits modal shapes very similar to those of the system with
S = 1.32. With the increase of S, the contribution of the rotational component in mode 1 and 2 reduces and disappears for
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3782 ORFEO et al.

F IGURE 15 Response of Friuli earthquake: Time history of the bearing, superstructure and rocking contributions to the top node
displacement: (A) S = 0.93, (B) S = 9.56, (C) S = 19.

F IGURE 16 Response of Friuli earthquake in terms of top acceleration: (A) S = 0.93, (B) S = 9.56, (C) S = 19.

TABLE 8 Response of Friuli earthquake: Maximum isolator displacement, maximum total displacement at the top and rocking
contribution.

Shape factorS [–]
Max Isolator
displacement [m]

Max total top
displacement [m]

Rocking
contribution [m]

Rocking / Max Total
Top displ [%]

Max Top
Acceleration [m/s2]

0.93 0.0155 0.0179 0.029 16.0 0.66
1.32 0.0158 0.018 0.028 15.7 0.71
9.56 0.019 0.0202 0.001 0.5 0.72
19 0.019 0.0203 0.0003 0.15 0.73

S = 9.24. This is due to the fact that with the increase of shape factor, the ratio kz/kx increases as shown in Table 7 and
this limits the rotation of the base slab.
The second part of the parametric study investigates the seismic response of the isolated systems models correspond-

ing to bearings with different S values. In the analyses, all the earthquake inputs of Table 3 were considered, with the
exception of Bingol. Under these records, the response can be estimated assuming no variation in horizontal and verti-
cal stiffness with the horizontal displacement. This removes the uncertainties related to the evaluation of the coupled
horizontal-vertical behaviour of the bearings under larger displacements as those induced by Bingol. Figure 15(A–C)
shows the time history of the top displacement responses for the case of Friuli earthquake input. Plotted in the same
figures are the contributions to the displacement response of the top node by the bearings, the superstructure, and the
rocking base. Figure 16(A–C) shows the response in terms of top acceleration under Friuli earthquake. Table 8 shows the
maximum isolator displacement, the maximum displacement at the top of the superstructure, the rocking contribution
due to the Friuli earthquake input and themaximum top acceleration. The total displacement demand and themaximum
top acceleration increase slightly for increasing values of S, whereas the rocking contribution follows an opposite trend.
In any case, the contribution of rocking to the top displacement response is about 16% for LSFs and reduces to 0.15% for
the highest shape factor considered in this study.
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TABLE 9 Response of all earthquake inputs: Maximum total displacement at the top and rocking contribution.

Shape factor S 0.93 1.32 9.56 19

Earthquake name

Max total
top displ.
[m]

Rocking /
max top
displ [%]

Max total
top displ.
[m]

Rocking /
max top
displ [%]

Max total
top displ.
[m]

Rocking /
max top
displ [%]

Max total
top displ.
[m]

Rocking /
max top
displ [%]

Friuli 0.0179 16.0 0.018 15.7 0.0203 0.5 0.0203 0.15
Montenegro 0.0207 15.0 0.0216 14.7 0.0235 0.6 0.0235 0.15
Etolia 0.0208 14.9 0.0217 14.7 0.0236 0.6 0.0237 0.14
Lazio/Abruzzo 0.0207 15.0 0.0217 14.6 0.0237 0.6 0.0237 0.14
ID 290 0.0208 15.0 0.0216 14.8 0.0236 0.6 0.0237 0.14
ID 287 0.0207 15.0 0.0217 14.7 0.0235 0.6 0.0236 0.14

TABLE 10 Response of all earthquake inputs: Maximum top acceleration [m/s2].

Shape factor S 0.9 1.32 9.56 19
Earthquake Name
Friuli 0.664 0.714 0.719 0.733
Montenegro 0.756 0.765 0.814 0.791
Etolia 0.749 0.772 0.819 0.786
Lazio/Abruzzo 0.747 0.775 0.817 0.789
ID 290 0.747 0.779 0.816 0.794
ID 287 0.746 0.778 0.824 0.787

Table 9 reports the total displacement of the top of the superstructure and the rocking contribution resulting from the
analyses carried out considering the various earthquake inputs. The rocking contribution exhibits the same decreasing
trend for increasing values of the shape factor for the various earthquake inputs. A maximum ratio of the rocking to the
maximum total displacement of 16% is obtained for the lowest shape factor, whereas a minimum ratio of 0.13% is observed
for S = 19. The order of magnitude of the rocking contribution observed in the worst-case scenario is overall quite low.
Themaximum displacement at the top increases by 11% for Friuli earthquake and by 8% for the remaining earthquakes for
values of S increasing from 0.9 to 19. Finally, Table 10 reports the response of all earthquake input in terms of maximum
top acceleration. In terms of effectiveness of base isolation, it can be observed that top acceleration increases with the
increase of the shape factor. By including rocking component under horizontal excitation demonstrated in fact that LSF
bearings enhance seismic performance of the isolation systems in comparison with higher shape factor bearings. This
outcome is confirmed by displacement (Figure 15) and acceleration trend (Figure 16) demonstrating a lower number of
peaks with lower magnitude in case of LSF bearings. Even if rocking contribution to top displacement is higher in case of
LSF compared to higher shape factors, total top displacement and acceleration tend to reduce achieving amain advantage
of base isolation in the former case.

5 CONCLUSIONS

This study investigates experimentally and numerically themechanical behaviour of laminated elastomeric bearings with
a LSF and the dynamic response of structures mounted on them.
A simplified theory for describing the mechanical behaviour of LSF bearings under compressive and shear loadings

is illustrated. The proposed theory is an extension of the theory of Muhr for slender blocks and, similar to the theory of
Stanton, accounts for the important effects of axial shortening and rubber layer bulging on the bearing behaviour. The
experimental tests conducted at TARRC rubber research centre on LSF rubber bearings with low damping and double
shear testpieces are considered for validating the proposed theory and comparisons are also made also with the theories
of Koh and Kelly and Stanton. Moreover, the shaking table tests carried out at University of Naples Federico II on the
bearings manufactured at TARRC are also considered to show the application of the bearing model for the purpose of
evaluating the dynamic behaviour and seismic response of structures mounted on LSF bearings.
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With regards to the theories for describing the mechanical behaviour of LSF bearings, the following conclusions can be
drawn:

∙ Linear theories as the one developed by Gent and Koh and Kelly for simulating the behaviour of isolation bearings with
high shape factors cannot be used for the LSF considered in this study.

∙ Stanton’s model, which accounts for the increase of plane area of the bearing due to compression, provides more
accurate results estimates of the compressive and horizontal behaviour than the theories of Gent and Koh and Kelly.

∙ The formulation recently developed by Muhr, accounting for the change of height and area of the rubber layers under
compression and also based on a finite strain formulation, provides the best fit to the experimental responses to
compressive and horizontal loading.

The second part of the paper illustrates the results of the shaking table tests performed at University of Naples Federico
II on a structural prototype isolated on the LSF bearings developed at TARRC. These results are complemented by the
outcomes of the simulations carried out with a simplified model derived considering few generalized coordinates and
based on the bearing model illustrated in the first part of the study.
The following conclusions are drawn:

∙ The simplified model based on very few generalized coordinates yields very good estimates of the system modal
properties.

∙ The eigenvalues analysis shows that rocking of the base affects significantly only the second and thirdmode of vibration
of the system.

∙ The proposed model provides accurate estimates of the seismic response of the isolated structure. The error in the
estimation of themaximumbearing deflections is less than 10%, whereas higher errors are associated with the estimates
of the superstructure drifts.

∙ The reduction of horizontal and vertical stiffness of the bearings for increasing horizontal displacements has to be
considered to accurately capture the period elongation and the changes in dynamic behaviour of the system under the
Bingol record, which induces larger deflections in the bearings compared to the other records.

In the final part of the paper, a parametric study is carried out to identify the effect of the bearing the shape factor on the
dynamic behaviour of the isolated system. Based on the results of the analyses, the following conclusion can be drawn:

∙ To completely suppress the rocking motion, higher shape factor bearings are needed. However, the bearings with LSF
perform better in terms of deflection of the base isolation system and of the superstructure in conjunction with lower
acceleration.

∙ The contribution of the base rotation to the top displacement of the prototype is low even for the case of the lowest
shape factor (16% for the Friuli earthquake).

Based on these results, it can be concluded that the proposed LSF bearingmodel can be used for preliminary assessment
and design purposes and that rocking may not be significant even for low values of the shape factor of the isolation
bearings. It isworth noting, however, that the proposedmodel has some limitations, particularly in caseswhere the bearing
experiences large displacements such that the response cannot be described by considering the initial stiffness in the
horizontal and transverse direction. For such instances, further experimental tests would be required to calibrate more
accurate models for describing the non-linearities arising from material or geometric factors and the coupling between
the horizontal and vertical responses. These experiments will have to be conducted under both quasi-static and dynamic
loading, in order to shed light on the different behaviour expected under these conditions. In order to gather experimental
data for validation of analytical andnumericalmodels, in a future study load cells should be used tomeasure the horizontal
and vertical loads acting on each single bearing. Future studies need to be carried out to extend the model developed by
Muhr for describing the mechanical behaviour of LSF bearings with high damping rubber compounds and to evaluate its
suitability under even larger bearing deflections.
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