Enhancing the Seismic Response of Residential RC Buildings with an Innovative Base Isolation Technique.
The prediction of the magnitude and impact of forthcoming earthquakes remains an elusive challenge in the field of science. Consequently, extensive research efforts have been directed toward the development of earthquake-resistant design strategies aimed at mitigating building vibrations. This study focuses on the efficacy of fluid viscous dampers (FVDs) in augmenting the seismic response of a low-rise residential reinforced-concrete building, which is base-isolated, using high–damping rubber bearings (HDRBs). The structural analysis employs a non-linear approach, employing ETABS v16 software for building modeling and conducting non-linear dynamic analysis using artificial accelerograms specific to Algeria. Three distinct connection configurations to the building’s base are investigated: (1) a fixed-base structure; (2) a structure isolated by HDRBs; and (3) a structure isolated utilizing a novel parallel arrangement of HDRBs in conjunction with FVDs. Comparative evaluation of these configurations reveals noteworthy findings; the results demonstrate that the base isolation system, comprising HDRBs and FVDs, significantly diminishes the base shear force by over 80% and reduces acceleration by 54% while concurrently increasing displacement by 47%. These findings underscore the effectiveness of incorporating FVDs in conjunction with HDRBs as a means to enhance the seismic response of reinforced concrete buildings. This study showcases the potential of such structural analyses to contribute to the development of earthquake-resistant design approaches, providing valuable insights for architects and engineers involved in constructing resilient buildings in seismically active regions.